Saccharomyces boulardii is a probiotic yeast often used for the treatment of GI tract disorders such as diarrhea symptoms. It is genetically close to the model yeast Saccharomyces cerevisiae and its classification as a distinct species or a S. cerevisiae variant has long been discussed. Here, we review the main genetic divergencies between S. boulardii and S. cerevisiae as a strategy to uncover the ability to adapt to the host physiological conditions by the probiotic. S. boulardii does possess discernible phenotypic traits and physiological properties that underlie its success as probiotic, such as optimal growth temperature, resistance to the gastric environment and viability at low pH. Its probiotic activity has been elucidated as a conjunction of multiple pathways, ranging from improvement of gut barrier function, pathogen competitive exclusion, production of antimicrobial peptides, immune modulation, and trophic effects. This review summarizes the participation of S. boulardii in these mechanisms and the multifactorial nature by which this yeast modulates the host microbiome and intestinal function.
Fibrinogen is a multifunctional plasma protein that plays a crucial role in several biological processes. Elevated fibrinogen induces erythrocyte hyperaggregation, suggesting an interaction between this protein and red blood cells (RBCs). Several studies support the concept that fibrinogen interacts with RBC membrane and this binding, due to specific and non-specific mechanisms, may be a trigger to RBC hyperaggregation in inflammation. The main goals of our work were to prove that human RBCs are able to specifically bind soluble fibrinogen, and identify membrane molecular targets that could be involved in this process. RBCs were first isolated from blood of healthy individuals and then separated in different age fractions by discontinuous Percoll gradients. After isolation RBC samples were incubated with human soluble fibrinogen and/or with a blocking antibody against CD47 followed by fluorescence confocal microscopy, flow cytometry acquisitions and zeta potential measurements. Our data show that soluble fibrinogen interacts with the human RBC membrane in an age-dependent manner, with younger RBCs interacting more with soluble fibrinogen than the older cells. Importantly, this interaction is abrogated in the presence of a specific antibody against CD47. Our results support a specific and age-dependent interaction of soluble fibrinogen with human RBC membrane; additionally we present CD47 as a putative mediator in this process. This interaction may contribute to RBC hyperaggregation in inflammation.
Acetylcholine (ACh) has been shown to exert an anti-inflammatory function by downmodulating the expression of pro-inflammatory cytokines. Its availability can be regulated at different levels, namely at its synthesis and degradation steps. Accordingly, the expression of acetylcholinesterase (AChE), the enzyme responsible for ACh hydrolysis, has been observed to be modulated in inflammation. To further address the mechanisms underlying this effect, we aimed here at characterizing AChE expression in distinct cellular types pivotal to the inflammatory response. This study was performed in the human acute leukaemia monocytyc cell line, THP-1, in human monocyte-derived primary macrophages and in human umbilical cord vein endothelial cells (HUVEC). In order to subject these cells to inflammatory conditions, THP-1 and macrophage were treated with lipopolysaccharide (LPS) from E.coli and HUVEC were stimulated with the tumour necrosis factor α (TNF-α). Our results showed that although AChE expression was generally up-regulated at the mRNA level under inflammatory conditions, distinct AChE protein expression profiles were surprisingly observed among the distinct cellular types studied. Altogether, these results argue for the existence of cell specific mechanisms that regulate the expression of acetylcholinesterase in inflammation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.