A transfer printing method for fabricating organic electronics onto flexible substrates has been developed. The method relies primarily on differential adhesion for the transfer of a printable layer from a transfer substrate to a device substrate. The works of adhesion and cohesion for successful printing are discussed and developed for a model organic thin-film transistor device consisting of a polyethylene terephthalate (PET) substrate, gold (Au) gate and source/drain electrodes, a polymethylmethacrylate (PMMA) [or poly(4-vinylphenol)] dielectric layer, and a pentacene (Pn) organic semiconductor layer. The device components are sequentially printed onto the PET device substrate with no mixed processing steps performed on the device substrate. Optimum printing conditions for the Pn layer were determined to be 600psi and 120°C for 3min. A set of devices with a PMMA dielectric layer was measured as a function of channel length and exhibited a contact resistance corrected mobility of 0.237cm2∕Vs. This is larger than the mobility measured for a control device consisting of Pn thermally deposited onto the thermally oxidized surface of a silicon substrate (SiO2∕Si) with e-beam deposited Au top source/drain contacts. The structure of transfer printed Pn films was also investigated using x-ray diffraction. The basal spacing correlation length for a 50nm Pn film printed at 600psi and 120°C for 3min onto a PMMA surface showed a 35% increase as compared to an unprinted film on a thermally oxidized silicon substrate. The crystalline size was seen to correlate with the mobility as a function of printing conditions.
A printing process for high-resolution transfer of all components for organic electronic devices on plastic substrates has been developed and demonstrated for pentacene (Pn), poly (3-hexylthiophene) and carbon nanotube (CNT) thin-film transistors (TFTs). The nanotransfer printing process allows fabrication of an entire device without exposing any component to incompatible processes and with reduced need for special chemical preparation of transfer or device substrates. Devices on plastic substrates include a Pn TFT with a saturation, field-effect mobility of 0.09 cm 2 (Vs) -1 and on/off ratio approximately 10 4 and a CNT TFT which exhibits ambipolar behavior and no hysteresis.
Black-to-transmissive switching polymer electrochromic devices (ECDs) were designed using a set of spray-processable cathodically coloring polymers, a non-color-changing electroactive polymer poly(2,2,6,6-tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA) as the charge-compensating counter electrode, and a highly conducting gel electrolyte (6.5 mS cm(-1)). The color "black" was obtained by utilizing (1) individual copolymers absorbing across the visible spectrum, and (2) blends and bilayers of several polymer electrochromes with complementary spectral absorption. Neutral-state black and ink-like dark purple-blue (or "ink-black") donor-acceptor (DA) copolymers composed of the electron-donor 3,4-propylenedioxythiophene (ProDOT) and the electron-acceptor 2,1,3-benzothiadiazole (BTD) building units, which possess relatively homogeneous absorption profiles across the visible spectrum, were chosen for their propensity to switch to transmissive states upon electrochemical oxidation. A blend of magenta and cyan polymers (PProDOT-(CH(2)OEtHx)(2) and P(ProDOT-BTD-ProDOT), respectively) was produced with the goal of generating the same dark purple-blue color as that obtained with the "ink-black" DA copolymer. While the multi-polymer ECDs demonstrate high contrasts (up to 50%T), and switch from a saturated purple-blue color (L*=32, a*=13, b*=-46) to a light green-blue transmissive state (L*=83, a*=-3, b*=-6), devices made with the DA electrochromic copolymers switch more than two times faster (0.7 s to attain 95% of the full optical change) than those involving the polymer blends (1.6 s), and exhibit more neutral achromatic colors (L*=38, a*=5, b*=-25 for the colored state and L*=87, a*=-3, b*=-2 for the bleached state, correspondingly). The results obtained suggest that these materials should prove to be applicable in both transmissive- (window-type) and reflective-type ECDs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.