Thermally incised meltwater channels that flow each summer across melt-prone surfaces of the Greenland ice sheet have received little direct study. We use high-resolution WorldView-1/2 satellite mapping and in situ measurements to characterize supraglacial water storage, drainage pattern, and discharge across 6,812 km 2 of southwest Greenland in July 2012, after a record melt event. Efficient surface drainage was routed through 523 high-order stream/river channel networks, all of which terminated in moulins before reaching the ice edge. Low surface water storage (3.6 ± 0.9 cm), negligible impoundment by supraglacial lakes or topographic depressions, and high discharge to moulins (2.54-2.81 cm·d) indicate that the surface drainage system conveyed its own storage volume every <2 d to the bed. Moulin discharges mapped inside ∼52% of the source ice watershed for Isortoq, a major proglacial river, totaled ∼41-98% of observed proglacial discharge, highlighting the importance of supraglacial river drainage to true outflow from the ice edge. However, Isortoq discharges tended lower than runoff simulations from the Modèle Atmosphérique Régional (MAR) regional climate model (0.056-0.112 km ), and when integrated over the melt season, totaled just 37-75% of MAR, suggesting nontrivial subglacial water storage even in this melt-prone region of the ice sheet. We conclude that (i) the interior surface of the ice sheet can be efficiently drained under optimal conditions, (ii) that digital elevation models alone cannot fully describe supraglacial drainage and its connection to subglacial systems, and (iii) that predicting outflow from climate models alone, without recognition of subglacial processes, may overestimate true meltwater export from the ice sheet to the ocean.Greenland ice sheet | supraglacial hydrology | meltwater runoff | mass balance | remote sensing M eltwater runoff from the Greenland ice sheet (GrIS) accounts for half or more of its total mass loss to the global ocean (1, 2) but remains one of the least-studied hydrologic processes on Earth. Each summer, a complex system of supraglacial meltwater ponds, lakes, streams, rivers, and moulins develops across large areas of the southwestern GrIS surface, especially below ∼1,300 m elevation (3-7), with supraglacial erosion driven by thermal and radiative processes (5). Digital elevation models (DEMs) suggest a poorly drained surface resulting from abundant topographic depressions, which computational flow routing models must artificially "fill" to allow hydrological flow paths extending from the ice sheet interior to its edge (8-11). The realism of such modeled flow paths remains largely untested by real-world observations. To date, most observational studies of GrIS supraglacial hydrology have focused on large lakes (∼1 km 2
SignificanceMeltwater runoff is an important hydrological process operating on the Greenland ice sheet surface that is rarely studied directly. By combining satellite and drone remote sensing with continuous field measurements of discharge in a large supraglacial river, we obtained 72 h of runoff observations suitable for comparison with climate model predictions. The field observations quantify how a large, fluvial supraglacial catchment attenuates the magnitude and timing of runoff delivered to its terminal moulin and hence the bed. The data are used to calibrate classical fluvial hydrology equations to improve meltwater runoff models and to demonstrate that broad-scale surface water drainage patterns that form on the ice surface powerfully alter the timing, magnitude, and locations of meltwater penetrating into the ice sheet.
Understanding Greenland ice sheet (GrIS) hydrology is essential for evaluating response of ice dynamics to a warming climate and future contributions to global sea level rise. Recently observed increases in temperature and melt extent over the GrIS have prompted numerous remote sensing, modeling, and field studies gauging the response of the ice sheet and outlet glaciers to increasing meltwater input, providing a quickly growing body of literature describing seasonal and annual development of the GrIS hydrologic system. This system is characterized by supraglacial streams and lakes that drain through moulins, providing an influx of meltwater into englacial and subglacial environments that increases basal sliding speeds of outlet glaciers in the short term. However, englacial and subglacial drainage systems may adjust to efficiently drain increased meltwater without significant changes to ice dynamics over seasonal and annual scales. Both proglacial rivers originating from land-terminating glaciers and subglacial conduits under marine-terminating glaciers represent direct meltwater outputs in the form of fjord sediment plumes, visible in remotely sensed imagery. This review provides the current state of knowledge on GrIS surface water hydrology, following ice sheet surface meltwater production and transport via supra-, en-, sub-, and proglacial processes to final meltwater export to the ocean. With continued efforts targeting both process-level and systems analysis of the hydrologic system, the larger picture of how future changes in Greenland hydrology will affect ice sheet glacier dynamics and ultimately global sea level rise can be advanced.
ABSTRACT. Increased mass losses from the Greenland ice sheet and inferred contributions to sea-level rise have heightened the need for hydrologic observations of meltwater exiting the ice sheet. We explore whether temporal variations in ice-sheet surface hydrology can be linked to the development of a downstream sediment plume in Kangerlussuaq Fjord by comparing: (1) plume area and suspended sediment concentration from Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and field data; (2) ice-sheet melt extent from Special Sensor Microwave/Imager (SSM/I) passive microwave data; and (3) supraglacial lake drainage events from MODIS. Results confirm that the origin of the sediment plume is meltwater release from the ice sheet. Interannual variations in plume area reflect interannual variations in surface melting. Plumes appear almost immediately with seasonal surface-melt onset, provided the estuary is free of landfast sea ice. A seasonal hysteresis between melt extent and plume area suggests late-season exhaustion in sediment supply. Analysis of plume sensitivity to supraglacial events is less conclusive, with 69% of melt pulses and 38% of lake drainage events triggering an increase in plume area. We conclude that remote sensing of sediment plume behavior offers a novel tool for detecting the presence, timing and interannual variability of meltwater release from the ice sheet.
Abstract. Greenland ice sheet mass losses have increased in recent decades with more than half of these attributed to surface meltwater runoff. However, the magnitudes of englacial storage, firn retention, internal refreezing and other hydrologic processes that delay or reduce true water export to the global ocean remain less understood, partly due to a scarcity of in situ measurements. Here, ice sheet surface meltwater runoff and proglacial river discharge between 2008 and 2010 near Kangerlussuaq, southwestern Greenland were used to establish sub-and englacial meltwater storage for a small ice sheet watershed (36-64 km 2 ). This watershed lacks significant potential meltwater storage in firn, surface lakes on the ice sheet and in the proglacial area, and receives limited proglacial precipitation. Thus, ice sheet surface runoff not accounted for by river discharge can reasonably be attributed to retention in sub-and englacial storage. Evidence for meltwater storage within the ice sheet includes (1) characteristic dampened daily river discharge amplitudes relative to ice sheet runoff; (2) three cold-season river discharge anomalies at times with limited ice sheet surface melt, demonstrating that meltwater may be retained up to 1-6 months; (3) annual ice sheet watershed runoff is not balanced by river discharge, and while near water budget closure is possible as much as 54 % of melting season ice sheet runoff may not escape to downstream rivers; (4) even the large meltwater retention estimate (54 %) is equivalent to less than 1 % of the ice sheet volume, which suggests that storage in en-and subglacial cavities and till is plausible. While this study is the first to provide evidence for meltwater retention and delayed release within the Greenland ice sheet, more information is needed to establish how widespread this is along the Greenland ice sheet perimeter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.