Through nonwoven hydroentanglement of greige cotton blends with polyester and nylon, varying degrees of fiber surface polarity, swelling, and absorbance can be achieved. Electrokinetic properties of nonwoven blends made with Ultra Clean™ cotton (100% greige or virgin cotton) and polyester or nylon in 40:60 and 60:40 ratios demonstrated distinct differences in charge, swell, and per-cent moisture uptake capability. An electrochemical double layer analysis of charge based on a pH titration (pH 1.5–11 in 1 mM KCl) was employed to measure the relative fiber and fabric surface polarity (ζplateau), which ranged from −60 to −26 millivolts. A linear relationship of fiber swelling (Δζ) and per cent moisture content is apparent when greige cotton and synthetic fibers are blended. Water contact angles revealed that the cotton/synthetic fiber blends were hydrophobic (contact angle >80°) while retaining significant absorbency. The greige cotton/synthetic nonwoven materials, however, possess absorbent properties characterized by varying degrees of moisture uptake, fiber polarity, and swelling attributes similar to absorbent fluid transport materials present in the layers of incontinence products. Electrokinetic properties of the blended greige cotton/synthetic nonwovens are correlated to absorbent incontinence materials.
A search for GUT magnetic monopoles has been conducted using the Soudan i-,.. 2 nucleon decay detector. This detector is a fine-grained tracking calorimeter. Monopole candidates were selected on the basis of significantly higher ionization .. than throughgoin9 cosmic ray muons. Preliminary results, using data taken over " approzimately one year with no monopoles observed, correspond to a flux limit of 2.4 10-14cm-28r-ls-1 over a velocity range of 10-3 3 < 0.95.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.