Our main result is the proof of the existence of random stationary tessellations in ddimensional Euclidean space with the following stability property: their distribution is invariant with respect to the operation of iteration (or nesting) of tessellations with an appropriate rescaling. This operation means that the cells of a given tessellation are individually and independently subdivided by independent, identically distributed tessellations, resulting in a new tessellation. It is also shown that, for any stationary tessellation, the sequence that is generated by repeated rescaled iteration converges weakly to such a stable tessellation; thus, the class of all stable stationary tessellations is fully characterized.
Tessellations of R3 that use convex polyhedral cells to fill the space can be extremely complicated. This is especially so for tessellations which are not ‘facet-to-facet’, that is, for those where the facets of a cell do not necessarily coincide with the facets of that cell's neighbours. Adjacency concepts between neighbouring cells (or between neighbouring cell elements) are not easily formulated when facets do not coincide. In this paper we make the first systematic study of these topological relationships when a tessellation of R3 is not facet-to-facet. The results derived can also be applied to the simpler facet-to-facet case. Our study deals with both random tessellations and deterministic ‘tilings’. Some new theory for planar tessellations is also given.
Recently (Nagel and Weiss, 2005), the class of homogeneous random tessellations that are stable under the operation of iteration (STIT) was introduced. In the present paper this model is reviewed and new results for the mean values of essential geometric features of STIT tessellations in two and three dimensions are provided and proved. For the isotropic model, these mean values are compared with those ones of the Poisson-Voronoi and of the Poisson plane tessellations, respectively
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.