Observations of Sun-like stars over the last half-century have improved our understanding of how magnetic dynamos, like that responsible for the 11-year solar cycle, change with rotation, mass and age. Here we show for the first time how metallicity can affect a stellar dynamo. Using the most complete set of observations of a stellar cycle ever obtained for a Sun-like star, we show how the solar analog HD 173701 exhibits solar-like differential rotation and a 7.4-year activity cycle. While the duration of the cycle is comparable to that generated by the solar dynamo, the amplitude of the brightness variability is substantially stronger. The only significant difference between HD 173701 and the Sun is its metallicity, which is twice the solar value. Therefore, this provides a unique opportunity to study the effect of the higher metallicity on the dynamo acting in this star and to obtain a comprehensive understanding of the physical mechanisms responsible for the observed photometric variability. The observations can be explained by the higher metallicity of the star, which is predicted to foster a deeper outer convection zone and a higher facular contrast, resulting in stronger variability.
Accurate determination of stellar rotation periods is important for estimating stellar ages as well as for understanding stellar activity and evolution. While for about thirty thousand stars in the Kepler field rotation periods can be determined, there are over hundred thousand stars, especially with low photometric variability and irregular pattern of variations, for which rotational periods are unknown. Here, we investigate the effect of metallicity on the detectability of rotation periods. This is done by synthesising light curves of hypothetical stars, which are identical to our Sun, with the exception of the metallicity. These light curves are then used as an input to the period determination algorithms. We find that the success rate for recovering the rotation signal has a minimum close to the solar metallicity value. This can be explained by the compensation effect of facular and spot contributions. In addition, selecting solar-like stars with near-solar effective temperature, near solar photometric variability, and with metallicity between M/H = -0.35 and M/H = 0.35 from the Kepler sample, we analyse the fraction of stars for which rotational periods have been detected as a function of metallicity. In agreement with our theoretical estimate we found a local minimum for the detection fraction close to the solar metallicity. We further report rotation periods of 87 solar-like Kepler stars for the first time.
Context. Comparison studies of Sun-like stars with the Sun suggest an anomalously low photometric variability of the Sun compared to Sun-like stars with similar magnetic activity. Comprehensive understanding of stellar variability is needed, to find a physical reasoning for this observation. Aims. We investigate the effect of metallicity and effective temperature on the photometric brightness change of Sun-like stars seen at different inclinations. The considered range of fundamental stellar parameters is sufficiently small so the stars, investigated here, still count as Sun-like or even as solar twins. Methods. To model the brightness change of stars with solar magnetic activity, we extend a well established model of solar brightness variations, SATIRE (which stands for Spectral And Total Irradiance Reconstruction), which is based on solar spectra, to stars with different fundamental parameters. For that we calculate stellar spectra for different metallicities and effective temperature using the radiative transfer code ATLAS9. Results. We show that even a small change (e.g. within the observational error range) of metallicity or effective temperature significantly affects the photometric brightness change compared to the Sun. We find that for Sun-like stars, the amplitude of the brightness variations obtained for Strömgren (b + y)/2 reaches a local minimum for fundamental stellar parameters close to the solar metallicity and effective temperature. Moreover, our results show that the effect of inclination decreases for metallicity values greater than the solar metallicity. Overall, we find that an exact determination of fundamental stellar parameters is crucially important for understanding stellar brightness changes.
Context. Stellar spectral synthesis is essential for various applications, ranging from determining stellar parameters to comprehensive stellar variability calculations. New observational resources as well as advanced stellar atmosphere modelling, taking three dimensional effects from radiative magnetohydrodynamics calculations into account, require a more efficient radiative transfer. Aims. For accurate, fast and flexible calculations of opacity distribution functions (ODFs), stellar atmospheres, and stellar spectra, we developed an efficient code building on the well-established ATLAS9 code. The new code also paves the way for easy and fast access to different elemental compositions in stellar calculations. Methods. For the generation of ODF tables, we further developed the well-established DFSYNTHE code by implementing additional functionality and a speed-up by employing a parallel computation scheme. In addition, the line lists used can be changed from Kurucz's recent lists. In particular, we implemented the 3 line list. Results. A new code, the Merged Parallelised Simplified ATLAS, is presented. It combines the efficient generation of ODF, atmosphere modelling, and spectral synthesis in local thermodynamic equilibrium, therefore being an all-in-one code. This all-in-one code provides more numerical functionality and is substantially faster compared to other available codes. The fully portable MPS-ATLAS code is validated against previous ATLAS9 calculations, the PHOENIX code calculations, and high-quality observations.
Context. Stellar spectra synthesis is essential for the characterization of potential planetary hosts. In addition, comprehensive stellar variability calculations with fast radiative transfer are needed to disentangle planetary transits from stellar magnetically-driven variability. The planet-hunting space telescopes, such as CoRoT, Kepler, and TESS will bring vast quantities of data, rekindling the interest in fast calculations of the radiative transfer. Aims. We revisit the Opacity Distribution Functions (ODF) approach routinely applied to speedup stellar spectral synthesis. To achieve a considerable speedup relative to the current state-of-the-art, we further optimize the approach and search for the best ODF configuration. Furthermore, we generalize the ODF approach for fast calculations of flux in various filters often used in stellar observations. Methods. In a parameter-sweep-fashion, we generated ODF in the spectral range from UV to IR with different setups. The most accurate ODF configuration for each spectral interval was determined. For calculations of the radiative fluxes through filters we adapted the wavelength grid based on the transmission curve, whereafter the normal ODF procedure was performed. Results. Our optimum ODF configuration allows for a three fold speedup, compared to the previously used ODF configurations. The ODF generalization to calculate fluxes through filters results in a speedup of more than two orders of magnitude.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.