A mathematical simulation of a dust particle's behavior in the electrodynamic linear quadrupole trap with closing end electrodes allowed us to reveal several features of the phenomena. Regions of stable confinement of a single particle, in dependence of frequency and charge-to-mass ratio, were determined. With an increase of the medium's dynamical viscosity, the region for confining charged particles by the trap becomes wider. We obtained values of the maximum quantities of charged particles confined by the trap at atmospheric pressure in air. Firstly, we presented observations of ordered Coulomb structures of charged dust particles obtained in the quadrupole trap in air at atmospheric pressure. The structures consisted of positively charged oxide aluminum particles 10-15 µm in size and hollow glass microspheres 30-50 µm in diameter. The ordered structure could contain particles of different sizes and charges. The trap could confine a limited number of charged particles. The ordered structures of charged micro-particles obtained in the experiments can be used to study Coulomb systems without neutralizing the plasma background and action of ion and electron flows, which are always present in non-homogeneous plasma.
The theoretical basis and experimental verification of resonant phenomena in the electromagnetic fields generated by displacement current in the near zone of dielectric ring is presented. According to the traditional viewpoint, the dielectric has an influence on the electric field inside resonator. To the contrary, we demonstrate that the dielectric ring exhibits magnetic properties at resonance. The sliding incidence of plane microwave on this weakly absorbing ring is shown to provide the sharp and deep resonance in the components of generated field; this low loss circuit is operating as a resonant dielectric magnetic dipole. Splitting and broadening of resonance in the pair of these dipoles dependent upon their mutual arrangement is recorded. The phase shift equal to π between the magnetic components of incident and generated wave indicating the formation of negative magnetic response is demonstrated. Perspectives of using of this simple sub wavelength resonant magnetic dipoles in the all-dielectric circuitry are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.