Summary We present the first worldwide study on the apple ( Malus × domestica) fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results revealed that the composition and structure of the fungal and bacterial communities associated with apple fruit vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggests a potential link between location and the type and rate of postharvest diseases that develop in each country. The global core microbiome of apple fruit was represented by several beneficial microbial taxa and accounted for a large fraction of the fruit microbial community. The study provides foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.
The biocontrol potentials of Candida tropicalis YZ1, C. tropicalis YZ27 and Saccharomyces cerevisiae YZ7 against the postharvest anthracnose pathogen Colletotrichum musae were investigated. Treatments with all the three biocontrol agents (1 9 10 8 CFU/ml) significantly reduced the natural anthracnose disease severity of harvested banana fruits stored at ambient condition. Germination and survival of C. musae spores were markedly inhibited by all the three yeast strains in in vitro tests. The niche overlap index (NOI) was used to determine the interaction between the antagonists and C. musae, and the results (high NOI values) suggest competitive exclusion of C. musae by the yeast strains. C. tropicalis YZ27 inoculated on banana wounds exhibited rapid colonization and maintenance of its population on the inoculated site. The biocontrol efficacy was also observed as a function of concentration of the antagonist applied. The fruits treated with C. tropicalis YZ27, 36 h before pathogen inoculation, showed the best results with 96.0% disease inhibition followed by those treated 24 h before with 84.0% inhibition. The above results point to competition for nutrients and space as the main mechanism of antagonistic action of C. tropicalis YZ27 against C. musae.
Background: Apple is one of the most highly consumed fruits worldwide and is the largest fruit crop produced in temperate regions. Fruit quality, safety and long-term storage are issues that are important to growers, distributors, and consumers. We present the first worldwide study on the apple fruit microbiome that examines questions regarding the composition and the assembly of microbial communities on and in apple fruit. Results: Results revealed that the composition and structure of the fungal and bacterial communities associated with ‘Royal Gala’ apple fruit at harvest maturity vary and are highly dependent on geographical location. The study also confirmed that the spatial variation in the fungal and bacterial composition of different fruit tissues exists at a global level. Fungal diversity varied significantly in fruit harvested in different geographical locations and suggest a potential link between location and the type and rate of postharvest diseases that develop in each country. Although the geography, climatic conditions, and management practices may have a significant impact on the composition of fruit microbial communities, we were able to identify a 'core' microbiome that is shared in fruit across the globe. Conclusions: Results of this study provide foundational information about the apple fruit microbiome that can be utilized for the development of novel approaches for the management of fruit quality and safety, as well as for reducing losses due to the establishment and proliferation of postharvest pathogens. It also lays the groundwork for studying the complex microbial interactions that occur on apple fruit surfaces.
Fungal pathogens in fruits and vegetables cause significant losses during handling, transportation, and storage. Biological control with microbial antagonists replacing the use of chemical fungicides is a major approach in postharvest disease control, and several products based on single antagonists have been developed but have limitations related to reduced and inconsistent performance under commercial conditions. One possible approach to enhance the biocontrol efficacy is to broaden the spectrum of the antagonistic action by employing compatible microbial consortia. Here, we explore commercial kefir grains, a natural probiotic microbial consortium, by culture-dependent and metagenomic approaches and observed a rich diversity of co-existing yeasts and bacterial population. We report effective inhibition of the postharvest pathogen Penicillium expansum on apple by using the grains in its fresh commercial and milk-activated forms. We observed few candidate bacteria and yeasts from the kefir grains that grew together over successive enrichment cycles, and these mixed fermentation cultures showed enhanced biocontrol activities as compared to the fresh commercial or milk-activated grains. We also report several individual species of bacteria and yeasts with biocontrol activities against Penicillium rots on apple and grapefruit. These species with antagonistic properties could be further exploited to develop a synthetic consortium to achieve enhanced antagonistic effects against a wide range of postharvest pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.