The prothrombinase complex converts prothrombin to ␣-thrombin through the intermediate meizothrombin (Mz-IIa). Both ␣-thrombin and Mz-IIa catalyze factor (F) XI activation to FXIa, which sustains ␣-thrombin production through activation of FIX. The interaction with FXI is thought to involve thrombin anion binding exosite (ABE) I. ␣-Thrombin can undergo additional proteolysis to -thrombin and ␥-thrombin, neither of which have an intact ABE I. In a purified protein system, FXI is activated by -thrombin or ␥-thrombin, and by ␣-thrombin in the presence of the ABE I-blocking peptide hirugen, indicating that a fully formed ABE I is not absolutely required for FXI activation. In a FXI-dependent plasma thrombin generation assay, -thrombin, ␥-thrombin, and ␣-thrombins with mutations in ABE I are approximately 2-fold more potent initiators of thrombin generation than ␣-thrombin or Mz-IIa, possibly because fibrinogen, which binds to ABE I, competes poorly with FXI for forms of thrombin lacking ABE I. In addition, FXIa can activate factor FXII, which could contribute to thrombin generation through FXIIa-mediated FXI activation. The data indicate that forms of thrombin other than ␣-thrombin contribute directly to feedback activation of FXI in plasma and suggest that FXIa may provide a link between tissue factorinitiated coagulation and the proteases of the contact system. (Blood. 2011;118(2): 437-445) IntroductionThe trypsin-like protease ␣-thrombin (␣-IIa) is a key contributor to vital host responses to injury, including fibrin formation, 1-3 platelet and endothelial cell activation, 4 and inflammation. 5 During coagulation, prothrombin is converted to ␣-IIa through a series of proteolytic steps catalyzed by factor (F) Xa. 6,7 The process results in formation of a functional active site and expression of 2 anion binding exosites (ABE I and ABE II) that are required for ␣-IIa interactions with many substrates, receptors, and inhibitors (Table 1). [1][2][3]6 In the presence of FVa and phospholipid, FXa initially converts prothrombin to the protease meizothrombin (Mz-IIa; Figure 1A), 7-11 which expresses ABE I. 6 Mz-IIa is rapidly converted to ␣-IIa, which may undergo further proteolysis to form -thrombin (-IIa) and ␥-thrombin (␥-IIa) ( Figure 1B), 2 proteases with reduced capacity to catalyze ABE I-dependent reactions. [9][10][11][12] Physiologic roles for -IIa or ␥-IIa have not been established; however, both have been identified in clotting blood. 11 ␣-IIa up-regulates its own generation by activating the cofactors FV and FVIII, [1][2][3]9 and by converting FXI to the protease FXIa. 13,14 FXIa, in turn, sustains ␣-IIa generation by converting FIX to FIXa, 15 and possibly by activating FV and FVIII. 16 In the original cascade/ waterfall hypotheses of coagulation, FXI is activated by FXIIa 17,18 ; however, current models deemphasize this reaction based on the observation that FXI deficiency is associated with abnormal bleeding, whereas FXII deficiency is not. 18 FXI activation by ␣-IIa would explain the phenotypic di...
Background Factor (f) XIa is traditionally assigned a role in fIX activation during coagulation. However, recent evidence suggests this protease may have additional plasma substrates. Objective To determine if fXIa promotes thrombin generation and coagulation in plasma in the absence of fIX, and to determine if fXI deficiency produces an antithrombotic effect in mice independent of fIX. Methods FXIa, fXIa variants, and anti-fXIa antibodies were tested for their effects on plasma coagulation and thrombin generation in the absence of fIX, and for their effects on activation of purified coagulation factors. Mice with combined fIX and fXI deficiency were compared to mice lacking either fIX or fXI in an arterial thrombosis model. Results In fIX-deficient plasma, fXIa induced thrombin generation and anti-fXIa antibodies prolonged clotting times. This process involved fXIa-mediated conversion of fX and fV to their active forms. Activation of fV by fXIa required the A3 domain on the fXIa heavy chain, while activation of fX did not. FX activation by fXIa, unlike fIX activation, was not a calcium-dependent process. Mice lacking both fIX and fXI were more resistance to ferric chloride-induced carotid artery occlusion than fXI-deficient or fIX-deficient mice. Conclusion In addition to its predominant role as an activator of fIX, fXIa may contribute to coagulation by activating fX and fV. As the latter reactions do not require calcium, they may make important contributions to in vitro clotting assays triggered by contact activation. The reactions may be relevant to fXIa's roles in hemostasis and in promoting thrombosis.
Ожирение -ведущий фактор риска сахарного диабета 2 типа, нарушений липидного обмена и сердечно-сосудистых заболеваний. Дисфункции нарастающей массы висцеральной жировой ткани являются первичным звеном в патогенезе системной резистентности к инсулину. В обзоре рассмотрены современные представления о биохимических механизмах формирования окислительного стресса в адипоцитах при ожирении как одного из ключевых элементов нарушения их метаболизма, запускающего формирование системной инсулинорезистентности.Ключевые слова: адипоцит, окислительный стресс, резистентность к инсулину, диабет DOI: 10.18097/PBMC20166201014 * -адресат для переписки фосфорилирует молекулы субстратов инсулинового рецептора -insulin receptor substrates (IRS), среди которых IRS-1 и -2 наиболее значимы для транспорта глюкозы [19]. Фосфорилированные по остаткам тирозина молекулы IRS-1 и -2 становятся сайтом связывания с несколькими сигнальными молекулами, из числа которых наиболее значимой является фосфатидилинозитол 3-киназа (PI3K) -ключевой медиатор сигнала метаболического и митогенного эффектов инсулина. Благодаря активации PI3K происходит фосфорилирование её субстрата -PtdIns(4,5)P 2 (фосфатидилинозитол-4,5 бисфосфата) в позиции 3 инозитолового кольца с образованием PtdIns(3,4,5)P 3 (фосфатидилинозитол-3,4,5 трисфосфата) [18]. PtdIns(3,4,5)P 3 -вторичный посредник, аллостерический активатор 3-фосфоинозитид-зависимой киназы (PDK-1), с участием которой далее фосфорилируется серин/треониновая протеинкиназа B (Akt/ПКВ) по остатку сер-308. [20]. В результате этих событий, активированная протеинкиназа Akt/ПKB переходит из цитоплазмы в клеточную мембрану. Одной из мишеней Akt/ПКВ является белок AS160, ответственный за перемещение и встраивание в клеточную мембрану молекул ГЛЮТ-4, находящихся исходно в составе цитоплазматических везикул. После встраивания ГЛЮТ-4 в мембрану начинается транспорт глюкозы в клетку путём облегчённой диффузии [21].Известно, что уже на ранних этапах ожирения имеют место серьезные дисфункции адипоцитов [22]. Одним из существенных патогенетических факторов дисфункций является окислительный стресс, который развивается вследствие нарушения ряда внутриклеточных метаболических процессов, вызванных нарастающей гипергликемией [23]. Ниже детально рассмотрены явления, на основании которых избыток оксидантов, изначально продуцируемых растущей массой жировой ткани, стимулирует чувствительные к окислительному стрессу сигнальные пути, которые опосредованы транскрипционным фактором NF-kB и киназами JNK и p38-MAPK, а также активирует ряд протеинкиназ (ПКВ, ПКС и др.). Под их влиянием усиливается фосфорилирование остатков серина/треонина в молекулах IRS, что существенно затрудняет проведение сигнала от рецептора инсулина к содержащим ГЛЮТ-4 везикулам в цитоплазме адипоцитов, а затем и скелетных мышц. В итоге ГЛЮТ-4 теряет способность встраиваться в цитоплазматическую мембрану, несмотря на присутствие инсулина в крови. ГИПЕРГЛИКЕМИЯ -ИНДУКТОР ОКИСЛИТЕЛЬНОГО СТРЕССА ПРИ ОЖИРЕНИИХроническая гипергликемия -ведущий фактор возникновения системной ре...
The aim of this study was the comparative analysis of in vitro bio-testing of solid and porous TiNi samples with modified surfaces (intact, oxidated, and etched). Tests for cytocompatibility, hemolysis, and cytotoxicity (MTT) as well as visualization by confocal and scanning electron microscopy have shown that the chemically modified samples are the most cytocompatible. The intact and etched samples did not induce hemolysis greater than 2%, and thus they comply with the ISO 10993-4:2018 standard for hemolysis by blood-contacting biomaterials. Direct culture of etched samples with MCF-7 cells and human leukocytes showed low cytotoxicity. At the same time, the cytotoxicity of samples oxidated at 500 °C was significantly greater than that of the etched samples. Confocal and electron microscopy also confirmed the abovementioned quantitative data. The cells attached to the etched surface in numbers sufficient for them to be able to grow and proliferate on this substrate in vitro. These findings indicate that solid and porous TiNi alloy with surface modifications achieved by a cost-effective method is biotolerable and promising for clinical use and for tissue engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.