A new methodology to obtain metallic functional materials with predefined sets of strength properties has been developed. It has been shown that in order to accurately estimate set of material properties at the macro‐level, information from the micro‐level needs to be taken into account. As a result a two‐level estimation model, based on the theory of fuzzy sets, has been proposed. To demonstrate the developed methodology, a reinforcing steel has been analysed. Using microstructural information, derived from an available set of experimentally obtained digital images of material microsections under different heat treatment conditions, macroscopic strength properties of reinforcing steel have been determined.
A novel methodology, based on the theory of fuzzy sets, to obtain materials with pre‐defined sets of strength properties has been analysed from the position of identifying the necessary and sufficient number of experiments needed to predict these macro characteristics and establishing which micro parameters significantly influence the macroscale results. The procedure to estimate, with a user‐defined degree of accuracy, the minimum number of experiments and significant micro parameters has been tested and verified using experimental data, obtained from digital images of material microsections under different heat treatment conditions while analysing strength properties of reinforcing steel. The results confirm the possibility of using the developed methodologies for the performance properties evaluation of materials based on the minimum number of experiments and identification of the key grain‐phase parameters.
Введение Автоматизированная оценка состояния узлов электроцентробежных насосов (ЭЦН) является одной из важных задач, которые необходимо решить для повышения эффективности бизнеспроцессов нефтедобычи. Повышение эффективности процессов мониторинга состояния [1] и прогнозирования отказов ЭЦН зачастую требует разработки специального математического и информационного обеспечения. В настоящее время в мире бурно развиваются методы искусственного интеллекта (ИИ), включая предиктивную аналитику [2], основанную на глубокой обработке данных (data mining) с помощью машинного обучения и нейросетевых технологий. Однако количество подобных методов, введенных в промышленную эксплуатацию, достаточно невелико [3, 4]. В создании интеллектуальных информационных систем (ИИС) заинтересованы и многие крупные российские нефтегазовые компании. Кроме того, для выявления возможных аномалий в работе оборудования необходимо с помощью экспертов накопить необходимые знания, на осно-УДК 004.82; 004.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.