We report new types of heterogeneous hydrogen-oxygen and silicon-oxygen branched chain reactions which have been found to proceed explosively after the filling of pores of hydrogen-terminated porous silicon (Si) by condensed or liquid oxygen in the temperature range of 4.2-90 K. Infrared vibrational absorption spectroscopy shows that, while initially Si nanocrystals assembling the layers have hydrogen-terminated surfaces, the final products of the reaction are SiO2 and H2O. Time-resolved optical experiments show that the explosive reaction develops in a time scale of 10(-6) s. We emphasize the remarkable structural properties of porous Si layers which are crucial for the strong explosive interaction.
We demonstrate efficient resonant energy transfer from excitons confined in silicon nanocrystals to molecular oxygen (MO). Quenching of photoluminescence (PL) of silicon nanocrystals by MO physisorbed on their surface is found to be most efficient when the energy of excitons coincides with triplet-singlet splitting energy of oxygen molecules. The dependence of PL quenching efficiency on nanocrystal surface termination is consistent with short-range resonant electron exchange mechanism of energy transfer. A highly developed surface of silicon nanocrystal assemblies and a long radiative lifetime of excitons are favorable for achieving a high efficiency of this process.
The current contrast agents utilized in ultrasound (US) imaging are based on microbubbles which suffer from a short lifetime in systemic circulation. The present study introduces a new type of contrast agent for US imaging based on bioresorbable Janus nanoparticles (NPs) that are able to generate microbubbles in situ under US radiation for extended time. The Janus NPs are based on porous silicon (PSi) that was modified via a nanostopper technique. The technique was exploited to prepare PSi NPs which had hydrophobic pore walls (inner face), while the external surfaces of the NPs (outer face) were hydrophilic. As a consequence, when dispersed in an aqueous solution, the Janus NPs contained a substantial amount of air trapped in their nanopores. The specific experimental setup was developed to prove that these nano air seeds were indeed acting as nuclei for microbubble growth during US radiation. Using the setup, the cavitation thresholds of the Janus NPs were compared to their completely hydrophilic counterparts by detecting the subharmonic signals from the microbubbles. These experiments and the numerical simulations of the bubble dynamics demonstrated that the Janus NPs generated microbubbles with a radii of 1.1 μm. Furthermore, the microbubbles generated by the NPs were detected with a conventional medical ultrasound imaging device. Long systemic circulation time was ensured by grafting the NPs with two different PEG polymers, which did not affect adversely the microbubble generation. The present findings represent an important landmark in the development of ultrasound contrast agents which possess the properties for both diagnostics and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.