In this paper we give a complete topological classification of orientation preserving Morse-Smale diffeomorphisms on orientable closed surfaces. For MS diffeomorphisms with relatively simple behaviour it was known that such a classification can be given through a directed graph, a three-colour directed graph or by a certain topological object, called a 'scheme'. Here we will assign to any MS surface diffeomorphism a finite amount of data which completely determines its topological conjugacy class. Moreover, we show that associated to any abstract version of this data, there exists a unique conjugacy class of MS orientation preserving diffeomorphisms (on some orientation preserving surface). As a corollary we obtain a different proof that nearby MS diffeomorphisms are topologically conjugate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.