Вивчається стійкість навантаженої зовнішнім тиском оболонкової конструкції, що складається з спряжених циліндричних та конічних відсіків, підкріплених дискретно розташованими шпангоутами. Циліндричні відсіки обираються постійної товщини, конічні – лінійно змінної. Стійкість складеної підкріпленої конструкції і окремих її частин визначається за допомогою матричного методу. Особлива увага приділяється пошуку параметрів рівностійких прольотів підкріпленої конструкції, в тому числі підбору раціональних жорсткостей шпангоутів, що забезпечують рівностійкість локальних і загальних (з захватом шпангоутів) форм випинання. Вивчаються конструкції з різними параметрами.
This article analyzes the results of studies, which are based on numerical methods of analysis, of the stress-strain state of thin-walled shell structures. This article also discusses analytical solutions that apply asymptotic approaches and a method of initial parameters in a matrix form for solving a problem of equal stability of reinforced compartments of combined shell systems of the rocket and space technology within the scope of the research being carried out jointly by teams of Yuzhnoye State Design Office and Zaporizhzhya National University. The primary attention is paid to the use of FEM-based direct numerical methods and the research results for which analytical methods can be useful for making a preliminary assessment of the bearing capacity of load-bearing structures, and in some cases for their rational design. This article does not contrast numerical and analytical approaches but about the possibility of using them effectively. The article talks about possible ways of using the up-to-date technique of machine learning (Machine Learning Technology) in the calculation and experimental methods for determining the characteristics of the rocket and space technology.
The buckling problem of an elastic compound shell structure with a variable Gaussian curvature of the middle surface, especially the middle surface meridian curvature sign, under the action of external pressure and axial loading is considered. In continuation of the previous research of the authors, this paper is devoted, in particular, to examining the influence of the negative Gaussian curvature sign of one of its compartments on stability. The solution is based on using the method of finite differences for basic stability equations of each compartment in the case when one of them can have a negative curvature of the meridian, taking into account the discreteness of the intermediate rib location and their rigidity from the initial curvature plane as well. The obtained solution allows visualizing the buckling modes under various combinations of external loading and identifying rational, according to overall buckling modes, geometric and rigidity parameters of the system being investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.