of the original manuscript:Hedayati, M.K.; Javaherirahim, M.; Mozooni, B.; Abdelaziz, R.; Tavassolizadeh, A.; Chakravadhanula, V.S.K.; Zaporojtchenko, V.; Strunkus, T.; Faupel, F.; Elbahri, M.: Design of a Perfect Black Absorber at Visible Frequencies Using Plasmonic MetamaterialsIn: Advanced Materials (2011) Submitted to 2 ((During the course of the last decade, trends to achieve perfect absorbers increased tremendously due to the huge interest in development of the materials for harvesting solar energy. However up to date all of the applied methods (perforated metallic films, [1][2][3] grating structured systems [4][5][6][7] , and metamaterials [8][9][10][11][12][13][14] ) are costly and suffer from a lack of flexibility.Furthermore their absorbance is limited to a narrow spectral range which makes their application for a broad range of frequencies impossible.Here we demonstrate design, fabrication and characterization of a perfect plasmonic absorber in a stack of metal and nanocomposite showing almost 100% absorbance spanning a broad range of frequencies from ultraviolet to the near infrared. The fabrication technique of our metamaterial is pretty simple, cost effective and compatible with current industrial methods of MEMS which make our proposed system an outstanding candidate for high efficiency absorber materials.Thick metallic film are known as an excellent mirror but when they are structured, the reflectance fades away because the light gets absorbed by the excitation of the conduction electrons by electromagnetic waves which is generally known as plasmon resonance.[1] This concept has been used in the last few decades to realize highly absorbing systems in diverse areas of the electromagnetic spectrum but these works were either successful only for a very narrow range of frequencies [7,[14][15][16] or the absorbance was distant from that of blackbody materials [11] .Not only the metallic film supports plasmon resonances but also the metallic nanoparticles show high absorption due to its localized particle plasmon resonance (Mie resonance) [17][18] Indeed, the resonance of these particles embedded in different matrices has been extensively studied within the last decade and it is well known that the resonance bandwidth depends on the size, shape, density and distribution of the nanoparticles. [17][18] Indeed, a highly dense nanocomposite gives rise to a very broad-band absorption due to the excitation of the localized plasmon resonance of the nanoparticles by visible light. [19] In contrast to the Submitted to 3 expectation for the absorption behavior of a metal/polymer nanocomposite, we have recently shown that nanocomposites with low filling factor in a proximity to a thin metallic film can even enhance the optical transmission of the system due to the plasmonic coupling of the film and the nanoparticles which mainly result in a reflection/scattering reduction of the system by dipole/image interaction. [20] However, rising the distance between the metallic film and the nanoparticles by adding a space...
Nanocomposites combine favorable features of the constituents on the nanoscale to obtain new functionalities. The present paper is concerned with the preparation of polymer‐based nanocomposites consisting of metal nanoparticles in a polymer matrix and the resulting functional properties. Emphasis is placed on vapor phase deposition which inter alia allows the incorporation of alloy clusters with well defined composition and tailored filling factor profiles. Examples discussed here include optical composites with tuned particle surface plasmon resonances for plasmonic applications, magnetic high frequency materials with cut‐off frequencies well above 1 GHz, sensors that are based on the dramatic change in the electronic properties near the percolation threshold, and antibacterial coatings which benefit from the large effective surface of nanoparticles and the increased chemical potential which both strongly enhance ion release.
Nanocomposite films containing Ag nanoparticles embedded in a polymer matrix of Teflon AF, poly(methyl methacrylate) (PMMA) and Nylon 6 were prepared by vapour phase co-deposition in high vacuum. A large variation of the particle plasmon resonance frequency in the visible region was obtained by increasing the Ag volume fraction from 4-80%. The metal volume fraction was measured by energy dispersive x-ray spectrometry (EDX) and the film thickness was measured by surface profilometry. The position, width and strength of the plasmon resonance depend strongly on the metal filling factor, cluster size and interparticle distance. The microstructure of the nanocomposites (shape, size, size distribution and interparticle separation of metal clusters) was determined by transmission electron microscopy. The effect of the surrounding dielectric medium on the optical properties of nanocomposites was investigated by comparing the Teflon AF/Ag, PMMA/Ag and Nylon/Ag composites.
Co-sputtering from two independent magnetron sources was used to prepare polymer–metal nanocomposite films. Both gradient films with increasing metal fraction and homogeneous composite films were produced from polytetrafluoroethylene (PTFE) and silver targets using a rotatable sample holder. The structure of the pure sputtered polymer as well as the composite structure was studied. Electrical properties of the composite material near the percolation threshold show the expected, sharp change in the resistivity from 107 Ω cm atsmall silver content to 10−3 Ω cm after percolation. The optical absorption in the visible region due to surface plasmon resonances also has a strong dependence on the metal content, showing a red shift of the absorption peak from 405 nm to more than 500 nm at higher silver content.
Adlayers of different azobenzene-functionalized derivatives of the triazatriangulenium (TATA) platform on Au(111) surfaces were studied by scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS), gap-mode surface-enhanced Raman spectroscopy (gap-mode SERS), and cyclic voltammetry (CV). The chemical composition of the adlayers is in good agreement with the molecular structure, i.e., different chemical groups attached to the azobenzene functionality were identified. Furthermore, the presence of the azobenzene moieties in the adlayers was verified by the vibration spectra and electrochemical data. These results indicate that the molecules remain intact upon adsorption with the freestanding functional groups oriented perpendicularly to the TATA platform and thus also to the substrate surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.