We propose a new method for detecting high frequency gravitational waves (GWs) using high energy pulsed lasers. Through the inverse Gertsenshtein effect, the interaction between a GW and the laser beam results in the creation of an electromagnetic signal. The latter can be detected using single-photon counting techniques. We compute the minimal strain of a detectable GW which only depends on the laser parameters. We find that a resonance occurs in this process when the frequency of the GW is twice the frequency of the laser. With this method, the frequency range $10^{13}-10^{19} $ Hz is explored non-continuously for strains $h \gtrsim 10^{-20}$ for current laser systems and can be extended to $h \gtrsim 10^{-26}$ with future generation facilities.
We propose a new method for detecting high frequency gravitational waves (GWs) using high energy pulsed lasers. Through the inverse Gertsenshtein effect, the interaction between a GW and the laser beam results in the creation of an electromagnetic signal. The latter can be detected using single-photon counting techniques. We compute the minimal strain of a detectable GW which only depends on the laser parameters. We find that a resonance occurs in this process when the frequency of the GW is twice the frequency of the laser. With this method, the frequency range 10 12 −10 19 Hz is explored for strains h 10 −20 for current laser systems and can be extended to h 10 −27 with future generation facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.