Assays based on Förster resonance energy transfer (FRET) can be used to study many processes in cell biology. Although this is most often done with microscopy for fluorescence detection, we report two ways to measure FRET in living cells by flow cytometry. Using a conventional flow cytometer and the "3-cube method" for intensity-based calculation of FRET efficiency, we measured the enzymatic activity of specific kinases in cells expressing a genetically-encoded reporter. For both AKT and protein kinase A, the method measured kinase activity in time-course, doseresponse, and kinetic assays. Using the Cytek Aurora spectral flow cytometer, which applies linear unmixing to emission measured in multiple wavelength ranges, FRET from the same reporters was measured with greater single-cell precision, in real time and in the presence of other fluorophores. Results from gene-knockout studies suggested that spectral flow cytometry might enable the sorting of cells on the basis of FRET. The methods we present provide convenient and flexible options for using FRET with flow cytometry in studies of cell biology.
Somatic mutations of genes involved in NF-κB, PI3K/AKT, NOTCH, and JAK/STAT signaling pathways play an important role in the pathogenesis of Hodgkin lymphoma (HL). HL tumor cells form only about 5% of the tumor mass; however, it was shown that HL tumor-derived DNA could be detected in the bloodstream. This circulating tumor DNA (ctDNA) reflects the genetic profile of HL tumor cells and can be used for qualitative and quantitative analysis of tumor-specific somatic DNA mutations within the concept of liquid biopsy. Overall, the most frequently mutated gene in HL is STAT6; however, the exact spectrum of mutations differs between individual HL histological subtypes. Importantly, reduction of ctDNA plasma levels after initial treatment is highly correlated with prognosis. Therefore, ctDNA shows great promise as a novel tool for non-invasive tumor genome analysis for biomarker driven therapy as well as for superior minimal residual disease monitoring and treatment resistance detection. Here, we summarize the recent advancements of ctDNA analysis in HL with focus on ctDNA detection methodologies, genetic profiling of HL and its clonal evolution, and the emerging prognostic value of ctDNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.