In addition to general challenges in drug discovery such as the identification of lead compounds in time- and cost-effective ways, specific challenges also exist. Particularly, it is necessary to develop pharmacological inhibitors that effectively discriminate between closely related molecular targets. DYRK1B kinase is considered a valuable target for cancer-specific mono- or combination chemotherapy; however, the inhibition of its closely related DYRK1A kinase is not beneficial. Existing inhibitors target both kinases with essentially the same efficiency, and the unavailability of the DYRK1B crystal structure makes the discovery of DYRK1B-specific inhibitors even more challenging. Here, we propose a novel multi-stage compound discovery pipeline aimed at in silico identification of both potent and selective small molecules from a large set of initial candidates. The method uses structure-based docking and ligand-based quantitative structure–activity relationship modeling. This approach allowed us to identify lead and runner-up small-molecule compounds targeting DYRK1B with high efficiency and specificity.
A method is presented for an ultrafast shape-based search workflow for the screening of large compound collections, i.e., those of vendors. The three-dimensional shape of a molecule dictates its biological activity by enabling the molecule to fit into binding pockets of proteins. Quite often, distinctly different chemical compounds that have similar shapes can bind in a similar way. OpenEye pioneered an algorithm for comparing shapes of molecules by overlaying them in a computer and measuring differences between a query molecule and a target molecule. Overlaying shapes is a computationally intensive process and represents a bottleneck in searching for similar molecules. More recent publications describe alternative methods of overlaying molecules, which are accomplished by comparing shape-based descriptors. These methods were implemented in the Open Drug Discovery Toolkit (ODDT) package. We utilized a combination of open-source software packages like ODDT and RDkit to implement a workflow for ultrafast conformer generation and matching that does not require storing precomputed conformers on the file system or in memory. Moreover, the generated descriptors could be optionally stored in MongoDB for performing searches in the future. To speed up the search, we created a set of indexes from the transformed shape-based descriptors. We are in the process of calculating descriptors for multiple vendors, including Enamine’s “REAL” collection of 1.2 billion compounds. Currently, the shape similarity search on more than 70 million compounds takes less than 8 s! We exemplified our methodology with the screen of compounds that can act as putative TLR4 agonists. The search was based on a literature-known small-molecule TLR4 agonist series. In due course, we identified compounds with novel structural motifs that were active in mouse and human TLR4 reporter cell lines.
Background This work presents a novel computational multi-reference poly-conformational algorithm for design, optimization, and repositioning of pharmaceutical compounds. Methods The algorithm searches for candidates by comparing similarities between conformers of the same compound and identifies target compounds, whose conformers are collectively close to the conformers of each compound in the reference set. Reference compounds may possess highly variable MoAs, which directly, and simultaneously, shape the properties of target candidate compounds. Results The algorithm functionality has been case study validated in silico, by scoring ChEMBL drugs against FDA-approved reference compounds that either have the highest predicted binding affinity to our chosen SARS-CoV-2 targets or are confirmed to be inhibiting such targets in-vivo. All our top scoring ChEMBL compounds also turned out to be either high-affinity ligands to the chosen targets (as confirmed in separate studies) or show significant efficacy, in-vivo, against those selected targets. In addition to method case study validation, in silico search for new compounds within two virtual libraries from the Enamine database is presented. The library’s virtual compounds have been compared to the same set of reference drugs that we used for case study validation: Olaparib, Tadalafil, Ergotamine and Remdesivir. The large reference set of four potential SARS-CoV-2 compounds has been selected, since no drug has been identified to be 100% effective against the virus so far, possibly because each candidate drug was targeting only one, particular MoA. The goal here was to introduce a new methodology for identifying potential candidate(s) that cover multiple MoA-s presented within a set of reference compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.