A gene that encodes fucoidanase ffa2 in the marine bacterium Formosa algae strain KMM 3553T was cloned, and the protein (FFA2) was produced in Escherichia coli. Recombinant fucoidanase FFA2 was purified, and the biochemical properties of this enzyme were studied. The amino acid sequence of FFA2 showed 57% identity with known fucoidanase FcnA from Mariniflexile fucanivorans. The mass of the gene product FFA2 is 101.2 kDa (918 amino acid residues). Sequence analysis has revealed that fucoidanase FFA2 belongs to the GH107 (CAZy) family. Detailed substrate specificity was studied by using fucoidans from brown seaweeds as well as synthetic fucooligosaccharide with distinct structures. Fucoidanase FFA2 catalyzes the cleavage of (1→4)-α-glycosidic bonds in the fucoidan from Fucus evanescens within a structural fragment (→3)-α-l-Fucp2S-(1→4)-α-l-Fucp2S-(1→)n but not in a fragment (→3)-α-l-Fucp2S,4S-(1→4)-α-l-Fucp2S-(1→)n. Using synthetic di-, tetra- and octasaccharides built up of the alternative (1→4)- and (1→3)-linked α-l-Fucp2S units, the difference in substrate specificity and in the rate of enzymatic selectivity was investigated. Nonsulfated and persulfated synthetic oligosaccharides were not transformed by the enzyme. Therefore, FFA2 was specified as poly[(1→4)-α-l-fucoside-2-sulfate] glycanohydrolase. This enzyme could be used for the modification of natural fucoidans to obtain more regular and easier characterized derivatives useful for research and practical applications.
A family of fifteen glycoclusters based on a cyclic oligo-(1→6)-β-D-glucosamine core has been designed as potential inhibitors of the bacterial lectin LecA with various valencies (from 2 to 4) and linkers. Evaluation of their binding properties towards LecA has been performed by a combination of hemagglutination inhibition assays (HIA), enzyme-linked lectin assays (ELLA), and isothermal titration microcalorimetry (ITC). Divalent ligands displayed dissociation constants in the sub-micromolar range and tetravalent ligands displayed low nanomolar affinities for this lectin. The influence of the linker could also be demonstrated; aromatic moieties are the best scaffolds for binding to the lectin. The affinities observed in vitro were then correlated with molecular models to rationalize the possible binding modes of these glycoclusters with the bacterial lectin.
Great interest in natural furanoside-containing compounds has challenged the development of preparative methods for their synthesis. Herein a novel reaction in carbohydrate chemistry, namely a pyranoside-into-furanoside (PIF) rearrangement permitting the transformation of selectively O-substituted pyranosides into the corresponding furanosides is reported. The discovered process includes acid-promoted sulfation accompanied by rearrangement of the pyranoside ring into a furanoside ring followed by solvolytic O-desulfation. This process, which has no analogy in organic chemistry, was shown to be a very useful tool for the synthesis of furanoside-containing complex oligosaccharides, which was demonstrated by synthesizing disaccharide derivatives α-D-Galp-(1→3)-β-D-Galf-OPr, 3-O-s-lactyl-β-D-Galf-(1→3)-β-D-Glcp-OPr, and α-L-Fucf-(1→4)-β-D-GlcpA-OPr related to polysaccharides from the bacteria Klebsiella pneumoniae and Enterococcus faecalis and the brown seaweed Chordaria flagelliformis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.