A two-channel sensor capable of almost instantaneous simultaneous detection of superoxide radical and hydrogen peroxide in the concentration range 10(-)(7)-10(-)(4) M is very important for understanding of a number of rapid kinetics processes. A glassy carbon working microelectrode covered by an electrodeposited polypyrrole/horseradish peroxidase (PPy/HRP) membrane was employed as a H(2)O(2) sensor. Another glassy carbon microelectrode covered by a composite membrane of an inside layer of PPy/HRP and an outside layer of superoxide dismutase was employed as a working electrode for superoxide detection. These two working electrodes with Pt counter and tungsten oxide (WO(3)) reference electrodes were contained in one 6 mm diameter Teflon cylinder. Simultaneous measurements were performed at a potential of -60 mV (vs WO(3) reference, pH 5.1). Additional sensor characterization was performed for pH 5.1-9.0. Superoxide sensor behavior as a function of membrane deposition conditions and coating time is reported. Sensors' mutual influence, selectivity, response times, linearity, stability, and sensitivity for hydrogen peroxide and superoxide are presented and discussed. A mathematical model of sensors' responses is proposed, with model calculation corresponding to experiment within 10%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.