Aerosols affect climate, health and aviation. Currently, their retrieval assumes a plane-parallel atmosphere and solely vertical radiative transfer. We propose a principle to estimate the aerosol distribution as it really is: a three dimensional (3D) volume. The principle is a type of tomography. The process involves wide angle integral imaging of the sky on a very large scale. The imaging can use an array of cameras in visible light. We formulate an image formation model based on 3D radiative transfer. Model inversion is done using optimization methods, exploiting a closed-form gradient which we derive for the model-fit cost function. The tomography model is distinct, as the radiation source is unidirectional and uncontrolled, while off-axis scattering dominates the images.
To recover the three dimensional (3D) volumetric distribution of matter in an object, images of the object are captured from multiple directions and locations. Using these images tomographic computations extract the distribution. In highly scattering media and constrained, natural irradiance, tomography must explicitly account for off-axis scattering. Furthermore, the tomographic model and recovery must function when imaging is done in-situ, as occurs in medical imaging and ground-based atmospheric sensing. We formulate tomography that handles arbitrary orders of scattering, using a monte-carlo model. Moreover, the model is highly parallelizable in our formulation. This enables large scale rendering and recovery of volumetric scenes having a large number of variables. We solve stability and conditioning problems that stem from radiative transfer (RT) modeling in-situ.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.