The impact of devices attached to animals remains a challenge in telemetry studies of dolphins. It was hypothesized that the hydrodynamic design of a tag could provide stable attachment to the dorsal fin by means of resultant hydrodynamic force appearing when a dolphin is swimming. To verify this hypothesis the computer fluid dynamics (CFD) study of tag performance was carried out. A virtual model presenting authentic geometry of a dolphin with tag attached to the dorsal fin was constructed. The same model without tag was used as a reference object to calculate tag impact as regards drag, lift, and moments coefficients. Flow around the models was simulated for the range of velocities as well as the ranges of pitch and yaw angles. It was shown that in 33 of 35 CFD scenarios the streamlined shape of a tag generates the lift force that facilitates keeping a tag attached to the fin. Throughout the set of calculations the tag-associated drag coefficient does not exceed 4%, which indicates low impact. Data obtained present a baseline for the further development of non-invasive dolphin telemetry tags.
The lymphatic system in teleost fish has genetic and developmental origins similar to those of the mammalian lymphatic system, which is involved in immune response and fluid homeostasis. Here, we show that the lymphatic system of tunas functions in swimming hydrodynamics. Specifically, a musculo-vascular complex, consisting of fin muscles, bones, and lymphatic vessels, is involved in the hydraulic control of median fins. This specialization of the lymphatic system is associated with fish in the family Scombridae and may have evolved in response to the demand for swimming and maneuvering control in these high-performance species.
The correlation between skin structure and hydrodynamic design of the dorsal fin of the harbor porpoise (Phocoena phocoena) was examined. For the study of fin morphology and geometry, a scheme of sampling representing a two-parameter mesh on the fin surface was used. At each data point the thickness of the epidermis, papillary and subpapillary layers of the dermis, the ligamentous layer of the fin, as well as the angle formed by the direction of dermal ridges and the fin root chord were measured. On the basis of fin cross-sections the three-dimensional surface models of the fin in a 1 : 1 scale were created with a CAD program. The shape of the model was evaluated by the wing and hydrofoil parameters (angle of leading edge sweep, leading edge radius, maximum thickness of the fin cross-section, and position of maximum thickness from the leading edge). Hydrodynamic performance of the fin cross-sections was studied with a CFD program. Regional variability of the parameters of morphology was compared with spanwise variability of the parameters of cross-sectional geometry. It was found that skin structure parameters correlate with the hydrodynamically relevant parameters of the fin and fin cross-sections. Regularities of skin structure of the harbor porpoise dorsal fin are considered indirect evidence of the adaptation of porpoise skin to the fin flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.