Prospects for development of glass-ceramic materials on the lithium aluminosilicates base in order to increase the reliability of armor protection elements have been analyzed. Compositions of lithium aluminosilicate glasses with low content of lithium oxide have been developed, spodumene glass-ceramic materials were obtained on their base in conditions of low-temperature thermal treatment. Formation of structure of glass-ceramic materials based on model glasses after thermal treatment has been investigated and the influence of phase composition on mechanical properties has been established. It was determined that the developed glass-ceramic materials are feasible for the application against the action of high-energy munitions with significant penetrating ability, especially when used in combination with ceramic elements.
The efficiency of the use of IR spectroscopy in studying the structure of magnesium-aluminosilicate glass-ceramic materials was analyzed. It was established that the formation of the structure of these glass-ceramic materials during the heat treatment is associated with a distortion of the cordierite structure. The presence of solid solutions, high and low cordierite in the structure of the materials under study was detected according to the systems of bands F2, E2, C2 and D2, depending on the temperature of their heat treatment. The mechanism of phase formation in magnesium-aluminosilicate glass-ceramic materials has been determined, which consists in the formation of future crystals of -cordierite and spinel at the initial stages of nucleation, and crystals of -cordierite and mullite at the stage of crystallization. Formation of a finely dispersed glass-ceramic structure with a predominant content of -cordierite or mullite under conditions of low-temperature heat treatment is a decisive factor in ensuring high thermal and mechanical properties of glass-ceramic materials. This allows them to be used as structural elements of devices and equipment under thermal and mechanical loads.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.