Adversarial examples that fool machine learning models, particularly deep neural networks, have been a topic of intense research interest, with attacks and defenses being developed in a tight back-and-forth. Most past defenses are best effort and have been shown to be vulnerable to sophisticated attacks. Recently a set of certified defenses have been introduced, which provide guarantees of robustness to normbounded attacks. However these defenses either do not scale to large datasets or are limited in the types of models they can support. This paper presents the first certified defense that both scales to large networks and datasets (such as Google's Inception network for ImageNet) and applies broadly to arbitrary model types. Our defense, called PixelDP, is based on a novel connection between robustness against adversarial examples and differential privacy, a cryptographically-inspired privacy formalism, that provides a rigorous, generic, and flexible foundation for defense.
In a world where traditional notions of privacy are increasingly challenged by the myriad companies that collect and analyze our data, it is important that decision-making entities are held accountable for unfair treatments arising from irresponsible data usage. Unfortunately, a lack of appropriate methodologies and tools means that even identifying unfair or discriminatory effects can be a challenge in practice.We introduce the unwarranted associations (UA) framework, a principled methodology for the discovery of unfair, discriminatory, or offensive user treatment in data-driven applications. The UA framework unifies and rationalizes a number of prior attempts at formalizing algorithmic fairness. It uniquely combines multiple investigative primitives and fairness metrics with broad applicability, granular exploration of unfair treatment in user subgroups, and incorporation of natural notions of utility that may account for observed disparities.We instantiate the UA framework in FairTest, the first comprehensive tool that helps developers check data-driven applications for unfair user treatment. It enables scalable and statistically rigorous investigation of associations between application outcomes (such as prices or premiums) and sensitive user attributes (such as race or gender). Furthermore, FairTest provides debugging capabilities that let programmers rule out potential confounders for observed unfair effects.We report on use of FairTest to investigate and in some cases address disparate impact, offensive labeling, and uneven rates of algorithmic error in four data-driven applications. As examples, our results reveal subtle biases against older populations in the distribution of error in a predictive health application and offensive racial labeling in an image tagger.
Cloud services have recently exploded with the advent of powerful cloud-computing platforms such as Amazon Web Services and Microsoft Azure. Today, most cloud services are accessed through REST APIs, and Swagger is arguably the most popular interface-description language for REST APIs. A Swagger specification describes how to access a cloud service through its REST API (e.g., what requests the service can handle and what responses may be expected).This paper introduces REST-ler, the first automatic intelligent REST API security-testing tool. REST-ler analyzes a Swagger specification and generates tests that exercise the corresponding cloud service through its REST API. Each test is defined as a sequence of requests and responses. REST-ler generates tests intelligently by (1) inferring dependencies among request types declared in the Swagger specification (e.g., inferring that "a request B should not be executed before a request A" because B takes as an input argument a resource-id x returned by A) and by (2) analyzing dynamic feedback from responses observed during prior test executions in order to generate new tests (e.g., learning that "a request C after a request sequence A;B is refused by the service" and therefore avoiding this combination in the future). We show that these two techniques are necessary to thoroughly exercise a service under test while pruning the large search space of possible request sequences. We also discuss the application of REST-ler to test GitLab, a large popular open-source self-hosted Git service, and the new bugs that were found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.