Nowadays ensuring the safety of people and the protection of infrastructure is a socially relevant topic, which requires a thorough investigation. The Institute of concrete construction at the University of the German Armed Forces in Munich is investigating the possibilities of using steel fiber concrete for the protection of military facilities and state-owned special buildings in Germany. In this research project steel fiber reinforced concrete is investigated under high dynamic loads specifically under contact detonation loading. Plates with varying reinforcement systems, different thicknesses, different fiber geometries, fiber contents and fiber types were produced.The following concrete compressive strengths C20/25, C40/50, C80/95 were used in this research project.The plates were loaded with 500 g, 750 g, 1000 g, 1500 g and 2000 g PETN explosive at the test facility of the German Armed Forces Technical centre for Protective and Special Technologies. An important property of construction material during ballistic threats and contact detonation is the concrete tensile strength. Through the addition of fibers, the post cracking behavior and the ductility of concrete components can be improved. All fiber-reinforced specimens showed less damage than the non-fiber reinforced elements. The aim of the study is to optimize the concrete mixture for the fiber concrete protection components considering the following factors: concrete quality, fiber content, fiber geometry, as well as aggregate size of the concrete. Another aim is to record and evaluate the damage parameters of the steel fiber reinforced concrete slabs after the highly dynamic load, and to investigate to offer suggestion for retrofitting. In this article, the test results of different steel framed concretes under highly dynamic conditions are presented.
Auf Basis von Spallationsversuchen an faserbewehrten Betonproben im Split‐Hopkinson‐Bar wurden die dynamischen Kennwerte Elastizitätsmodul, Zugfestigkeit und Bruchenergie ermittelt. Untersucht wurden Betonproben der Festigkeitsklassen C20/25, C40/50 und C80/95 mit Stahlfasergehalten von 0 bis 2,0 Vol.‐ % sowie mit Carbon‐ und PP‐Fasern im Dehnratenbereich von etwa 15 bis 25 1/s. Die Ergebnisse zeigen eine Zunahme der dynamischen Zugfestigkeit und des dynamischen Elastizitätsmoduls des Faserbetons mit steigendem Fasergehalt. Durch die Zugabe von Fasern ist zudem eine enorme Steigerung der Bruchenergie des Faserbetons gegenüber unbewehrten Proben festzustellen, welche für den Stahlfaserbeton im Vergleich zu dem untersuchten Carbon‐ und PP‐Faserbeton höher ausfällt. Mit 1,0 Vol.‐ % Stahlfasern konnte etwa eine Verzehnfachung der Bruchenergie des Stahlfaserbetons ermittelt werden. Weiter wurde festgestellt, dass der Anteil der Einzelfaser an der Verbundtragfähigkeit des Faserbetons mit steigendem Faservolumengehalt abnimmt, da aus der schwierigeren Verarbeitbarkeit eine inhomogene Faserverteilung mit schlechteren Verbundeigenschaften resultiert.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.