Abstract-An important domain for autonomic systems is the area of ubiquitous computing: users are increasingly surrounded by technology that is heterogeneous, pervasive, and variable. In this paper we describe our work in developing self-adapting computing infrastructure that automates the configuration and reconfiguration of such environments. Focusing on the engineering issues of self-adaptation in the presence of heterogeneous platforms, legacy applications, mobile users, and resource variable environments, we describe a new approach based on the following key ideas: 1) explicit representation of user tasks allows us to determine what service qualities are required of a given configuration; 2) decoupling task and preference specification from the lower level mechanisms that carry out those preferences provides a clean engineering separation of concerns between what is needed and how it is carried out; and 3) efficient algorithms allow us to calculate in real time near-optimal resource allocations and reallocations for a given task.
Self-adapting systems based on multiple concurrent applications must decide how to allocate scarce resources to applications and how to set the quality parameters of each application to best satisfy the user. Past work has made those decisions with analytic models that used current resource availability information: they react to recent changes in resource availability as they occur, rather than anticipating future availability. These reactive techniques may model each local decision optimally, but the accumulation of decisions over time nearly always becomes less than optimal. In this paper, we propose an approach to selfadaptation, called anticipatory configuration that leverages predictions of future resource availability to improve utility for the user over the duration of the task. The approach solves the following technical challenges: (1) how to express resource availability prediction, (2) how to combine prediction from multiple sources, and (3) how to leverage predictions continuously while improving utility to the user. Our experiments show that when certain adaptation operations are costly, anticipatory configuration provides better utility to the user than reactive configuration, while being comparable in resource demand.
Abstract. An increasingly important concern for modern systems design is how best to incorporate self-adaptation into systems so as to improve their ability to dynamically respond to faults, resource variation, and changing user needs. One promising approach is to use architectural models as a basis for monitoring, problem detection, and repair selection. While this approach has been shown to yield positive results, current systems use a reactive approach: they respond to problems only when they occur. In this paper we argue that self-adaptation can be improved by adopting an anticipatory approach in which predictions are used to inform adaptation strategies. We show how such an approach can be incorporated into an architecture-based adaptation framework and demonstrate the benefits of the approach.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.