Original adaptive line enhancer (ALE) is used for denoising periodic signals from white noise. ALE, however, relies mainly on second order similarity between the signal and its delayed version and is more effective when the signal is narrowband. A new ALE based on singular spectrum analysis (SSA) is proposed here. In this approach in the reconstruction stage of SSA, the eigentriples are adaptively selected (filtered) using the delayed version of the data. Unlike the conventional ALE where (second) order statistics are taken into account, here the full eigen-spectrum of the embedding matrix is exploited. Consequently, the system works for non-Gaussian noise and wideband periodic signals. By performing some experiments on synthetic signals it is demonstrated that the proposed system is very effective for separation of biomedical data, which often have some periodic or quasi-periodic components, such as EMG affected by ECG artefacts. This data are examined here.
Lung CT image segmentation is a key process in many applications such as lung cancer detection. It is considered a challenging problem due to existing similar image densities in the pulmonary structures, different types of scanners, and scanning protocols. Most of the current semi-automatic segmentation methods rely on human factors therefore it might suffer from lack of accuracy. Another shortcoming of these methods is their high false-positive rate. In recent years, several approaches, based on a deep learning framework, have been effectively applied in medical image segmentation. Among existing deep neural networks, the U-Net has provided great success in this field. In this paper, we propose a deep neural network architecture to perform an automatic lung CT image segmentation process. In the proposed method, several extensive preprocessing techniques are applied to raw CT images. Then, ground truths corresponding to these images are extracted via some morphological operations and manual reforms. Finally, all the prepared images with the corresponding ground truth are fed into a modified U-Net in which the encoder is replaced with a pre-trained ResNet-34 network (referred to as Res BCDU-Net). In the architecture, we employ BConvLSTM (Bidirectional Convolutional Long Short-term Memory)as an advanced integrator module instead of simple traditional concatenators. This is to merge the extracted feature maps of the corresponding contracting path into the previous expansion of the up-convolutional layer. Finally, a densely connected convolutional layer is utilized for the contracting path. The results of our extensive experiments on lung CT images (LIDC-IDRI database) confirm the effectiveness of the proposed method where a dice coefficient index of 97.31% is achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.