Generating a high startup torque is a critical factor for the application of small wind turbines in regions with low wind speed. In the present study, the blades of a small wind turbine were designed and optimized to maximize the output power and startup torque. For this purpose, the chord length and the twist angle were considered as design variables, and a multi-objective optimization study was used to assess the optimal blade geometry. The blade element momentum (BEM) technique was used to calculate the design goals and the genetic algorithm was utilized to perform the optimization. The BEM method and the optimization tools were verified with wind tunnel test results of the base turbine and Schmitz equations, respectively. The results showed that from the aerodynamic viewpoint, the blade of a small wind turbine can be divided into two sections: r/R < 0.52, which is responsible for generating the startup torque, and r/R ≥ 0.52, where most of the turbine power is generated. By increasing the chord length and twist angle (especially chord length) in the r/R < 0.52 section and following the ideal chord length and twist angle distributions in the r/R ≥ 0.52 part, a 140% rise in the startup torque of the designed blade was observed with only a 1.5% reduction in power coefficient, compared with the base blade. Thereby, the startup wind speed was reduced from 6 m/s for the base blade to 4 m/s for the designed blade, which provides greater possibilities for the operation of this turbine in areas with lower wind speeds.
The type of airfoil with small wind turbine blades should be selected based on the wind potential of the area in which the turbine is used. In this study, 10 low Reynolds number airfoils, namely, BW-3, E387, FX 63-137, S822, S834, SD7062, SG6040, SG6043, SG6051, and USNPS4, were selected and their performance was evaluated in a 1 kW wind turbine in terms of the power coefficient and also the startup time, by performing a multi-objective optimization study. The blade element momentum technique was utilized to perform the calculations of the power coefficient and startup time and the differential evolution algorithm was employed to carry out the optimization. The results reveal that the type of airfoil used in the turbine blade, aside from the aerodynamic performance, completely affects the turbine startup performance. The SG6043 airfoil has the highest power coefficient and the BW-3 airfoil presents the shortest startup time. The high lift-to-drag ratio of the SG6043 airfoil and the low inertia of the turbine blades fitted with the BW-3 airfoil make them suitable for operation in windy regions and areas with low wind speeds, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.