After a natural disaster roads can be damaged or blocked by debris, while bridges and viaducts may collapse.This commonly observed hazard causes some road sections to be closed and may even disconnect the road network. In the immediate disaster response phase work teams are dispatched to open a subset of roads to reconnect the network. Closed roads are traversable only after they are unblocked/cleared by one of the teams. The main objective of this research is to provide an efficient solution method to generate a synchronized work schedule for the road clearing teams. The solution should specify the synchronized routes of each clearing team so that: 1) connectivity of the network is regained, and 2) none of the closed roads are traversed unless their unblocking/clearing procedure is finished. In this study we develop an exact Mixed Integer Programming (MIP) formulation to solve this problem. Furthermore, we propose a matheuristic that is based on an MIP-relaxation and a local search algorithm. We prove that the optimality gap of the relaxation solution is bounded by K times the lower bound obtained from the relaxed model, where K is the number of teams. We show computationally that the matheuristic obtains optimal or near-optimal solutions.
After a natural disaster, roads and bridges can be damaged or blocked by debris, causing inaccessibility between critical locations such as hospitals, disaster response centers, shelters and disaster-struck areas.We study the post-disaster road clearing problem with the aim of providing a fast and effective method to determine the route of a work troop responsible for clearing blocked roads. The problem is to find a route for the troop that starts at the depot and visits all of the critical locations. The objective is to minimize the total latency of critical nodes, where the latency of a node is defined as the travel time from the depot to that node.A mathematical model for this problem has already been developed in the literature. However, for real-life instances with more than seven critical nodes, this exact formulation cannot solve the problem optimally in a 3-hour limit. To find a near-optimal solution in a short running time, we develop a heuristic that solves a mixed integer program on a transformed network and a lower bounding method to evaluate the optimality gaps. Alternatively, we develop a metaheuristic based on a combination of Greedy Randomized Adaptive Search Procedure (GRASP) and Variable Neighborhood Search (VNS). We test both the matheuristic and the metaheuristic on Istanbul data and show that optimal or near-optimal solutions are obtained within seconds.We also compare our algorithms with existing work in the literature. Finally, we conduct an analysis to observe the trade-off between total and maximum latency.
For effective disaster response, roads should be cleared or repaired to provide accessibility and relief services to the affected people in shortest time. We study an arc routing problem that aims to regain the connectivity of the road network components by clearing a subset of the blocked roads. In this problem, we maximize the total prize gained by reconnecting disconnected network components within a specified time limit. The solution should determine the coordinated routes of each work troop starting at a depot node such that none of the closed roads can be traversed unless their unblocking/clearing procedure is finished. We develop an exact Mixed Integer Program (MIP) and a matheuristic method. The matheuristic solves single vehicle problems sequentially with updated prizes. To obtain an upper bound, we first relax the timing elements in the exact formulation and then solve its relaxed MIP, which decomposes into single vehicle problems, by Lagrangian Relaxation. We show the effectiveness of the proposed methods computationally on both random Euclidean and Istanbul road network data generated with respect to predicted earthquake scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.