In this investigation, the multi-objective selection and optimization of a gantry machine tool is achieved by analytic hierarchy process, multi-objective genetic algorithm, and Pareto-Edgeworth-Grierson–multi-criteria decision-making method. The objectives include maximum static deformation, the first four natural frequencies, mass, and fabrication cost of the gantry. Further structural optimization of the best configuration was accomplished using multi-objective genetic algorithm to improve all objectives except cost. The result of sensitivity analysis reveals the major contribution of columns of gantry with respect to the crossbeam’s contribution. After determining the most effective geometrical parameters using sensitivity analysis, multi-objective genetic algorithm was performed to obtain the Pareto-optimal solutions. In order to choose the final configuration, Pareto-Edgeworth-Grierson–multi-criteria decision-making was applied. The procedure outlined in this article could be used for selection and optimization of gantry as quantitative method as opposed to traditional qualitative method exploited in industrial application for design of gantry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.