In this paper, we present a preconditioned variant of the generalized successive overrelaxation (GSOR) iterative method for solving a broad class of complex symmetric linear systems. We study conditions under which the spectral radius of the iteration matrix of the preconditioned GSOR method is smaller than that of the GSOR method and determine the optimal values of iteration parameters. Numerical experiments are given to verify the validity of the presented theoretical results and the effectiveness of the preconditioned GSOR method.
We present a new stationary iterative method, called Scale-Splitting (SCSP) method, and investigate its convergence properties. The SCSP method naturally results in a simple matrix splitting preconditioner, called SCSP-preconditioner, for the original linear system. Some numerical comparisons are presented between the SCSP-preconditioner and several available block preconditioners, such as PGSOR (Hezari et al. Numer. Linear Algebra Appl. 22, 761-776, 2015) and rotate block triangular preconditioners (Bai Sci. China Math. 56, 2523-2538, 2013, when they are applied to expedite the convergence rate of Krylov subspace iteration methods for solving the original complex system and its block real formulation, respectively. Numerical experiments show that the SCSP-preconditioner can compete with PGSOR-preconditioner and even more effective than the rotate block triangular preconditioners.
Recently Salkuyeh et al. (Int J Comput Math 92:802-815, 2015) studied the generalized SOR (GSOR) iterative method for a class of complex symmetric linear system of equations. In this paper, we present an inexact variant of the GSOR method in which the conjugate gradient and the preconditioned conjugate gradient methods are regarded as its inner iteration processes at each step of the GSOR outer iteration. Moreover, we construct a new method called shifted GSOR iteration method which is obtained from combination of a shiftsplitting iteration scheme and the GSOR iteration method. The convergence analysis of the proposed methods are presented. Some numerical experiments are given to show the performance of the methods and are compared with those of the inexact MHSS method.Mathematics Subject Classification. 65F10, 93C10.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.