SummaryThe neural circuits underlying learning and execution of goal-directed behaviors remain to be determined. Here, through electrophysiological recordings, we investigated fast sensory processing across multiple cortical areas as mice learned to lick a reward spout in response to a brief deflection of a single whisker. Sensory-evoked signals were absent from medial prefrontal cortex and dorsal hippocampus in naive mice, but developed with task learning and correlated with behavioral performance in mice trained in the detection task. The sensory responses in medial prefrontal cortex and dorsal hippocampus occurred with short latencies of less than 50 ms after whisker deflection. Pharmacological and optogenetic inactivation of medial prefrontal cortex or dorsal hippocampus impaired behavioral performance. Neuronal activity in medial prefrontal cortex and dorsal hippocampus thus appears to contribute directly to task performance, perhaps providing top-down control of learned, context-dependent transformation of sensory input into goal-directed motor output.
SummaryFrontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking. Whole-cell membrane potential recordings and silicon probe recordings of action potentials reveal layer-specific neuronal activity in wM1 at movement initiation, and encoding of fast and slow parameters of movements during whisking. Interestingly, optogenetic inactivation of wS1 caused hyperpolarization and reduced firing in wM1, together with reduced whisking. Optogenetic stimulation of wS1 drove activity in wM1 with complex dynamics, as well as evoking long-latency, wM1-dependent whisking. Our results advance understanding of a well-defined frontal region and point to an important role for sensory input in controlling motor cortex.
Primates can store sensory stimulus parameters in working memory for subsequent manipulation, but until now, there has been no demonstration of this capacity in rodents. Here we report tactile working memory in rats. Each stimulus is a vibration, generated as a series of velocity values sampled from a normal distribution. To perform the task, the rat positions its whiskers to receive two such stimuli, "base" and "comparison," separated by a variable delay. It then judges which stimulus had greater velocity SD. In analogous experiments, humans compare two vibratory stimuli on the fingertip. We demonstrate that the ability of rats to hold base stimulus information (for up to 8 s) and their acuity in assessing stimulus differences overlap the performance demonstrated by humans. This experiment highlights the ability of rats to perceive the statistical structure of vibrations and reveals their previously unknown capacity to store sensory information in working memory.
Highlights d Cortex-wide task-epoch-specific causal neural activity across sensorimotor learning d Rapid inhibitory response of orofacial cortex contributes to delay licking d Secondary whisker motor cortex is a key node converting whisker input to lick plan d Sensory information converges to a focal frontal area critical for delayed response
Background: Previous studies have assessed the effects of perturbation training on balance after stroke. However, the perturbations were either applied while standing or were small in amplitude during gait, which is not representative of the most common fall conditions. The perturbations were also combined with other challenges such as progressive increases in treadmill speed. Objective: To determine the benefit of treadmill training with intense and unpredictable perturbations compared to treadmill walking-only training for dynamic balance and gait post-stroke. Methods: Twenty-one individuals post-stroke with reduced dynamic balance abilities, with or without a history of fall and ability to walk on a treadmill without external support or a walking aid for at least 1 min were allocated to either an unpredictable gait perturbation (Perturb) group or a walking-only (NonPerturb) group through covariate adaptive randomization. Nine training sessions were conducted over 3 weeks. NonPerturb participants only walked on the treadmill but were offered perturbation training after the control intervention. Pre-and post-training evaluations included balance and gait abilities, maximal knee strength, balance confidence and community integration. Six-week phone follow-ups were conducted for balance confidence and community integration. Satisfaction with perturbation training was also assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.