Gas-fired power plants are environmentally friendly because of their high efficiency rates and low CO2 emissions. On the other hand, the output power of renewable generators is stochastic, meaning that additional capacity must be held in reserve throughout the system. Gas-fired power plants are ideally suited to mitigate renewable uncertainties as they are more flexible and can easily be fired up in just a few minutes, and subsequently be shut down. Increased use of gas-fired power plants makes gas and electricity networks more dependent, so that adequacy in fuel supply of electricity network becomes a majority. However expansion planning of gas and electricity systems is accomplished by private gas and electricity companies, having no effective data exchange mechanism together. So there is a need to provide a model that coordinates the expansion planning of gas and electricity networks. On the other hand, expansion cost of either gas or electricity network and risk criteria of integrated energy system may have priority in decision-making process. With different challenging attributes, there is a gap in the literature to provide a model that takes into account the privacy of energy parties with a minimum data exchange, while considering different attributes in decision-making process. In this paper a multi-attribute decision-making (MADM) method for co-expansion planning of gas and electricity systems is introduced. The proposed MADM method supposes that a central entity as Ministry of Energy (ME) is responsible for coordinated expansion planning of gas and electricity networks, while taking into account the privacy of gas and electricity energy parties. Decision-making attributes are conflicting and the proposed method selects the best plan based on a compromise among the attributes. Different attributes including gas expansion cost (GEC), electricity expansion cost (EEC), minimum of maximum regret (MMR) and β-robustness (β_R) are considered to find the best plan with regard to the preferences of independent gas and electricity network operators. In this regard, two multi-attribute decision analysis methodologies are employed: analytical hierarchy process (AHP) is used as a simple way to weight and rank all the attributes objectively and find the relative importance of various plans, and the weighted sum method to provide a general composite index and finding the final appropriate plan. A real case study in the Khorasan province of Iran, which has a high penetration level of gas-consuming generation units (GCGU), is utilized to demonstrate the effectiveness of proposed MADM method. Results are compared with a Pareto optimal method to qualify the accuracy of proposed method.
Gas-fired power plants are connection points between gas and electricity networks which are growing in installation due to their high efficiency rates and flexibilities. The main purpose of this paper is to adjust integrated expansion planning of gas-electricity system. In integrated expansion planning it is assumed that a central entity such as Ministry of Energy is responsible for the expansion of both gas and electricity networks. Results of the proposed method are examined in Khorasan province of Iran as a realistic case study which has a high penetration level of gas-driven units. To demonstrate the effectiveness of the proposed method, results are compared with those of an independent expansion planning method. Also sensitivity to load level growth forecast is analyzed.
The main purpose of this paper is to develop a method for sequential gas and electricity networks expansion planning problem. A leader-follower approach performs the expansion planning of the joint gas and electricity networks. Electric system operator under adequacy incentive decides about investment in capacity addition to the generation and transmission levels while considers the limitations on fuel consumption. On the other hand gas operator decides about investment in gas pipelines expansions considering the demanded gas by the electricity network. In this planning model for a joint gas-electricity network, supply and demand are matched together while adequacy of fuel for gas consuming units is also guaranteed. To illustrate the effectiveness of the proposed method Khorasan province of Iran is considered as a case study which has a high penetration level of gas-fired power plants (GFPP). Also results are compared with the integrated gas-electricity networks expansion planning method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.