In this study, the nonlinear vibration of a curved carbon nanotube conveying fluid is analyzed. The nanotube is assumed to be covered by a piezoelectric layer and the Euler–Bernoulli beam theory is employed to establish the governing equations of motion. The influence of carbon nanotube curvature on structural modeling and fluid velocity vector is considered and the slip boundary conditions of CNT conveying fluid are included. The mathematical modeling of the structure is developed using Hamilton’s principle and then, the Galerkin procedure is employed to discretize the equation of motion. Furthermore, the frequency response of the system is extracted by applying the multiple scales method of perturbation. Finally, a comprehensive study is carried out on the primary resonance and piezoelectric-based parametric resonance of the system. It is shown that consideration of nanotube curvature may lead to an increase in nonlinearity. Implementing the fluid velocity vector in which nanotube curvature is included highly affects the maximum amplitude of the response and should not be ignored. Furthermore, different system parameters have evident impacts on the behavior of the system and therefore, selecting the reasonable geometrical and physical parameters of the system can be very useful to achieve a favorable response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.