The obstructive sleep apnea syndrome significantly increases the risk of stroke or death from any cause, and the increase is independent of other risk factors, including hypertension.
PURPOSE-Cross-sectional studies have documented the co-occurrence of obstructive sleep apnea (hereafter sleep apnea) with glucose intolerance, insulin resistance, and type II diabetes mellitus (hereafter diabetes). It has not been determined, however, whether sleep apnea is independently associated with the subsequent development of diabetes, accounting for established risk factors.
METHODS-This observational cohort study examined 1233 consecutive patients in the VeteranAffairs Connecticut Health Care System referred for evaluation of sleep-disordered breathing; 544 study participants were free of preexisting diabetes and completed a full, attended, diagnostic polysomnogram. The study population was divided into quartiles based on severity of sleep apnea as measured by the apnea-hypopnea index. The main outcome was incident diabetes defined as fasting glucose level > 126 mg/dL and a corresponding physician diagnosis. Compliance with positive airway pressure therapy, and its impact on the main outcome, was also examined.RESULTS-In unadjusted analysis, increasing severity of sleep apnea was associated with an increased risk of diabetes (P for linear trend < 0.001). After adjusting for age, sex, race, baseline fasting blood glucose, body mass index (BMI), and weight change, an independent association was found between sleep apnea and incident diabetes (hazard ratio per quartile 1.43; CI 1.10 -1.86). Among patients with more severe sleep apnea (upper two quartiles of severity), 60% had evidence of regular positive airway pressure use, and this treatment was associated with an attenuation of the risk of diabetes (log-rank test P=0.04).CONCLUSION-Sleep apnea increases the risk of developing diabetes, independent of other risk factors. Among patients with more severe sleep apnea, regular positive airway pressure use may attenuate this risk.
Background: Although exercise training improves exercise tolerance in most patients with chronic obstructive pulmonary disease (COPD), some patients with severe disease may not be able to tolerate exercise training due to incapacitating breathlessness. Transcutaneous electrical muscle stimulation (TCEMS) has been shown to improve muscle strength, muscle mass, and performance in paraplegics, patients with knee ligament injury, and patients with peripheral vascular disease. We hypothesised that TCEMS of the lower extremities can improve muscle strength and exercise tolerance in patients with moderate to severe COPD. Methods: A randomised controlled trial of TCEMS of the lower extremities was performed in 18 medically stable patients of mean (SD) age 60.0 (1.5) years with a mean forced expiratory volume in 1 second (FEV 1 ) of 1.03 (0.10) l (38% predicted) and residual volume/total lung capacity (RV/TLC) of 59 (2)%. Stimulation of the lower extremities was performed three times a week, 20 minutes each session, for six continuous weeks. Quadriceps and hamstring muscle strength, exercise capacity, and peak oxygen uptake were measured at baseline and after 6 weeks of stimulation. Results: TCEMS improved both the quadriceps strength (by 39.0 (20.4)% v 9.0 (8.1)%, p=0.046) and hamstring muscle strength (by 33.9 (13.0)% v 2.9 (4.7)%, p=0.038) in the treated (n=9) and sham treated (n=9) groups, respectively. The improvement in muscle strength carried over to better performance in the shuttle walk test in the treated group (36.1% v 1.6% in the treated and sham groups respectively, p=0.007, Mann-Whitney U test). There was no significant change in lung function, peak workload, or peak oxygen consumption in either group. Muscle stimulation was well tolerated by the patients with no dropouts and better than 95% compliance with the protocol. Conclusions: TCEMS of peripheral muscles can be a useful adjunct to the comprehensive pulmonary rehabilitation of patients with COPD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.