This study investigates the influence of loading rates on the seismic response of steel structures. A series of coupon tests under typical earthquake-induced loading rates are carried out. In addition to the conventional monotonic tension test, the specimens are also tested under a discontinuous loading protocol that is analogous to the ramp-and-hold scheme employed in the pseudo-dynamic hybrid simulations. The test results are used to develop a uniaxial steel material model to account for the strain rate effect and stress relaxation. The material model facilitates the reuse of existing steel hysteresis models and can be used to model different structural components, such as columns, beams, braces, etc. The material model is then used for a parametric study to evaluate the impact of various loading rates on the global seismic response of a single degree of freedom structural system with different structural periods, and types and intensities of ground motions. It is found that the impact of loading rates is more significant for structures with a period of 0.5 s or less and it thus requires a fast control of the physical specimen in pseudo-dynamic hybrid testing. In addition, the material model is applied to a five-storey buckling restrained braced frame (BRBF) building with a structural period of 1.2 s. It is found that the earthquake-induced loading rates have a minor impact on the global response of the structure.
FormWorks-Plus is a generalized public domain user-friendly preprocessor developed to facilitate the process of creating finite element models for structural analysis programs. The lack of a graphical user interface in most academic analysis programs forces users to input the structural model information into the standard text files, which is a time-consuming and error-prone process. FormWorks-Plus enables engineers to conveniently set up the finite element model in a graphical environment, eliminating the problems associated with conventional input text files and improving the user's perception of the application. In this paper, a brief overview of the FormWorks-Plus structure is presented, followed by a detailed explanation of the main features of the program. In addition, demonstration is made of the application of FormWorks-Plus in combination with VecTor programs, advanced nonlinear analysis tools for reinforced concrete structures. Finally, aspects relating to the modelling and analysis of three case studies are discussed: a reinforced concrete beam-column joint, a steel-concrete composite shear wall, and a SFRC shear panel. The unique mixed-type frame-membrane modelling procedure implemented in FormWorks-Plus can address the limitations associated with most frame type analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.