One characteristic of true bugs (Heteroptera) is the presence of dorsal abdominal glands in the immature nymphal stages. These glands usually produce defensive chemicals (allomones) that vary among taxa but are still similar in closely related groups. Knowledge of the chemistry and prevalence of allomones in different taxa may clarify the evolution of these chemical defensive strategies. Within the infraorder Pentatomomorpha, the known secretions of nymphs of Pentatomidae tend to contain the hydrocarbon, n-tridecane, a keto-aldehyde, and an (E)-2-alkenal as the most abundant components. In the Coreidae, the dorsal abdominal gland secretions of nymphs often contain little or no hydrocarbon, and the most abundant keto-aldehyde and (E)-2-alkenal are often of shorter chain-length than those of pentatomids. We hypothesized that the long chain compounds would be less potent than their shorter homologs, and that bugs that carry the former would benefit from a synergistic effect of n-tridecane. To test this hypothesis we used three different behavioral assays with ants. A predator–prey assay tested the deterrence of allomones toward predators; a vapor experiment tested the effectiveness of allomones in the gaseous phase toward predators; and application of allomones onto predators tested the effect of direct contact. The results substantiate the hypothesis of a synergistic effect between n-tridecane and longer chain keto-aldehyde and (E)-2-alkenal in deterring predators. The short chain keto-aldehyde 4-oxo-(E)-2-hexenal was highly effective on its own. Thus, it seems that different groups of the infraorder diverged in their strategies involving defensive chemicals. Implications of this divergence are discussed.
The true bugs, or heteropterans, are known for their widespread production of anti-predator chemicals and alarm pheromones in scent glands, a derived trait that constitutes one of the defining characters of the suborder Heteroptera and a potential novel trait that contributed to their diversification. We investigated whether symbiotic bacteria could be involved in the formation of these chemicals using Thasus neocalifornicus, a coreid bug that produces semiochemicals frequently found in other bugs. Using DNA phylogenetic methodology and experiments using antibiotics coupled with molecular techniques, we identified Wolbachia as the microorganism infecting the scent glands of this bug. Decreasing the level of Wobachia infection using antibiotics was correlated with a diminution of heteropteran production of defensive compounds and alarm pheromones, suggesting that this symbiotic bacterium might be implicated in the formation of chemicals.
The authors wish to emphasize that they are not claiming that the defensive chemicals and alarm pheromones of all Heteropterans are produced by symbiotic bacteria. They worked with a single species, Thasus neocalifornicus, and it remains to be determined whether the chemical defenses of other Heteropterans also are produced partly or wholly by symbionts. The online version of the original article can be found at http://dx
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.