Inspirals of stellar-mass objects into massive black holes will be important sources for the space-based gravitational-wave detector LISA. Modelling these systems requires calculating the metric perturbation due to a point particle orbiting a Kerr black hole. Currently, the linear perturbation is obtained with a metric reconstruction procedure that puts it in a “no-string” radiation gauge which is singular on a surface surrounding the central black hole. Calculating dynamical quantities in this gauge involves a subtle procedure of “gauge completion” as well as cancellations of very large numbers. The singularities in the gauge also lead to pathological field equations at second perturbative order. In this paper we re-analyze the point-particle problem in Kerr using the corrector-field reconstruction formalism of Green, Hollands, and Zimmerman (GHZ). We clarify the relationship between the GHZ formalism and previous reconstruction methods, showing that it provides a simple formula for the “gauge completion”. We then use it to develop a new method of computing the metric in a more regular gauge: a Teukolsky puncture scheme. This scheme should ameliorate the problem of large cancellations, and by constructing the linear metric perturbation in a sufficiently regular gauge, it should provide a first step toward second-order self-force calculations in Kerr. Our methods are developed in generality in Kerr, but we illustrate some key ideas and demonstrate our puncture scheme in the simple setting of a static particle in Minkowski spacetime.
We extend previous work (2020 Class. Quantum Grav.
37 075001) to the case of Maxwell’s equations with a source. Our work shows how to construct a vector potential for the Maxwell field on the Kerr–Newman background in a radiation gauge. The vector potential has a ‘reconstructed’ term obtained from a Hertz potential solving Teukolsky’s equation with a source, and a ‘correction’ term which is obtainable by a simple integration along outgoing principal null rays. The singularity structure of our vector potential is discussed in the case of a point particle source.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.