In this work, an attempt has been made to fabricate hybrid Cu-SiC-Zn composites by friction stir processing technique. Through this investigation the different number of passes was applied to assess the effect of pass adding on the mechanical, microstructural and dislocation density behavior of the specimens. Formation of the intermetallic phases between the copper matrix and Zn particles was discovered through the processed specimens. According to the obtained results, the higher passes led to obtain more uniform dispersion of the SiC particles and intermetallic phases. This higher level of particles and intermetallic phases' distribution causes remarkable reduction of grain sizes through the composites. Dislocation density for the processed specimens was determined by using the hardness measurement method. The calculated values for the dislocation densities showed that presence of SiC particles and intermetallic phases could rise up the dislocation values. Measured microhardness values for the composites exhibit that they enhanced rather than base metal and these results were confirmed by dislocation densities values of the specimens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.