Iron oxide impregnated tamarind hull carbon (IOITHC) was developed for use as an adsorbent for the removal of As(V) from water. Tamarind hull was used as the source of carbonaceous material, which was first treated with ferric chloride and ammonium hydroxide solutions with successive calcination at 873-974 K in a muffle furnace for 1 h to prepare an arsenic adsorbent. The B.E.T surface area of IOITHC was found to be 304.6 m(2) g(-1) and the average iron content in the adsorbent was found to be 7 wt%. The point of zero charge (pH(zpc)) of IOITHC was found to be 6.9. As(V) and arsenic (as total) adsorption on IOITHC were investigated in batch mode using As(V) spiked distilled water and real contaminated groundwater (CGW). The effects of speed of agitation, adsorbent particle size, temperature, pH of the solution, and concentration of the adsorbate on the adsorption process were investigated. The maximum adsorption capacity of about 1.2 mg g(-1) As(V) was achieved. The removal of As(V) on IOITHC was compared with the untreated tamarind hull carbon as well as with the activated commercial carbon and IOITHC was found to be better adsorbent. Arsenic adsorption from arsenic contaminated groundwater (CGW) on IOITHC in batch mode indicates that 98% removal was achieved for adsorbent loading of 3.0 g L(-1) with initial arsenic concentration of 264 microg L(-1). Desorption study of arsenic from As(V)-loaded IOITHC was performed using aqueous solution in the pH range of 3 to 12.
The optimized formulation prepared according to the computer generated software, Design-Expert(®) deciphered response which were in close proximity with the experimental responses, thus confirming the robustness as well as accuracy of the predicted model for the utilization of natural polymer like mimosa seed gum for the chronotherapeutic treatment of nocturnal acid breakthrough.
Objective: The objective of the investigation was to isolate mucilage from sweet basil seeds and explore its physicochemical properties for the development of pharmaceutical suspensions and surfactant-free stable emulsions.Methods: Possible applications of sweet basil seed mucilage in the pharmaceutical field for dosage form development are being explored. The physicochemical and functional properties of the mucilage from the seeds of the Ocimum basilicum L. (Sweet basil) have been investigated for stabilization of suspensions and emulsions. The following analyses were performed: FTIR spectroscopy, phytochemical tests, XRD, swelling and rheological studies.Results: The analyses showed that the mucilage is rich in glucose, mannose, and xylose. High swelling index values varying from 100±10 to 200±13%, high water-holding capacity of 97.5±2.4 g/g mucilage and reasonable oil holding capacity of the mucilage (13.2±1.3 g/g mucilage) makes it an ideal candidate for utilization as viscosifier and stabilizer of suspensions and surfactant-free emulsions. Adult and paediatric paracetamol suspension formulations with 1%w/v mucilage have exhibited flocculated nature and good stability owing to its high sedimentation volume(F= 0.85-0.98) and good redispersibility. Sunflower oil emulsions prepared with 0.25%w/v mucilage demonstrated emulsion stability index of 105.714 on 5th day and extremely low creaming rate of 0.0004 cm/h thus confirming maximum stability compared to emulsions developed with 0.3-0.5% w/v mucilage.Conclusion: The mucilage isolated from Ocimum basilicum L. seeds may be regarded as a functional biomaterial for pharmaceutical use to ensure quality and stability of liquid dosage forms.
The optimized formulation prepared according to the computer generated software, Design-Expert® deciphered response which were in close proximity with the experimental responses, thus confirming the robustness and accuracy of the predicted model for the utilization of natural polymer like tamarind gum for the chronotherapeutic treatment of nocturnal acid breakthrough.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.