In hemodialysis patients extracellular fluid overload is a predictor of all-cause and cardiovascular mortality, and a relation with inflammation has been reported in previous studies. The magnitude and nature of this interaction and the effects of moderate fluid overload and extracellular fluid depletion on survival are still unclear. We present the results of an international cohort study in 8883 hemodialysis patients from the European MONDO initiative database where, during a three-month baseline period, fluid status was assessed using bioimpedance and inflammation by C-reactive protein. All-cause mortality was recorded during 12 months of follow up. In a second analysis a three-month baseline period was added to the first baseline period, and changes in fluid and inflammation status were related to all-cause mortality during six-month follow up. Both pre-dialysis estimated fluid overload and fluid depletion were associated with an increased mortality, already apparent at moderate levels of estimated pre-dialysis fluid overload (1.1-2.5L); hazard ratio 1.64 (95% confidence interval 1.35-1.98). In contrast, post-dialysis estimated fluid depletion was associated with a survival benefit (0.74 [0.62-0.90]). The concurrent presence of fluid overload and inflammation was associated with the highest risk of death. Thus, while pre-dialysis fluid overload was associated with inflammation, even in the absence of inflammation, fluid overload remained a significant risk factor for short-term mortality, even following improvement of fluid status.
Background and objectivesCurrent hemodialysis techniques fail to efficiently remove the protein-bound uremic toxins p-cresyl sulfate and indoxyl sulfate due to their high degree of albumin binding. Ibuprofen, which shares the same primary albumin binding site with p-cresyl sulfate and indoxyl sulfate, can be infused during hemodialysis to displace these toxins, thereby augmenting their removal.Design, setting, participants, & measurementsWe infused 800 mg ibuprofen into the arterial bloodline between minutes 21 and 40 of a conventional 4-hour high-flux hemodialysis treatment. We measured arterial, venous, and dialysate outlet concentrations of indoxyl sulfate, p-cresyl sulfate, tryptophan, ibuprofen, urea, and creatinine before, during, and after the ibuprofen infusion. We report clearances of p-cresyl sulfate and indoxyl sulfate before and during ibuprofen infusion and dialysate concentrations of protein-bound uremic toxins normalized to each patient’s average preinfusion concentrations.ResultsWe studied 18 patients on maintenance hemodialysis: age 36±11 years old, ten women, and mean vintage of 37±37 months. Compared with during the preinfusion period, the median (interquartile range) clearances of indoxyl sulfate and p-cresyl sulfate increased during ibuprofen infusion from 6.0 (6.5) to 20.2 (27.1) ml/min and from 4.4 (6.7) to 14.9 (27.1) ml/min (each P<0.001), respectively. Relative median (interquartile range) protein-bound uremic toxin dialysate outlet levels increased from preinfusion 1.0 (reference) to 2.4 (1.2) for indoxyl sulfate and to 2.4 (1.0) for p-cresyl sulfate (each P<0.001). Although median serum post- and predialyzer levels in the preinfusion period were similar, infusion led to a marked drop in serum postdialyzer levels for both indoxyl sulfate and p-cresyl sulfate (−1.0 and −0.3 mg/dl, respectively; each P<0.001). The removal of the nonprotein-bound solutes creatinine and urea was not increased by the ibuprofen infusion.ConclusionsInfusion of ibuprofen into the arterial bloodline during hemodialysis significantly increases the dialytic removal of indoxyl sulfate and p-cresyl sulfate and thereby, leads to greater reduction in their serum levels.
In HD patients, hyponatremia is associated with malnutrition, inflammation and fluid overload. Hyponatremia maintained predictive for all-cause mortality after adjustment for malnutrition, inflammation and fluid status abnormalities. The presence of hyponatremia may assist in identifying HD patients at increased risk of death.
Protein-bound uremic toxins (PBUTs) are poorly removed during hemodialysis (HD) due to their low free (dialyzable) plasma concentration. We compared PBUT removal between HD, hemodiafiltration (HDF), membrane adsorption, and PBUT displacement in HD. The latter involves infusing a binding competitor pre-dialyzer, which competes with PBUTs for their albumin binding sites and increases their free fraction. We used a mathematical model of PBUT/displacer kinetics in dialysis comprising a three-compartment patient model, an arterial/venous tube segment model, and a dialyzer model. Compared to HD, improvements in removal of prototypical PBUTs indoxyl sulfate (initial concentration 100 µM, 7% free) and p-cresyl sulfate (150 µM, 5% free) were: 5.5% and 6.4%, respectively, for pre-dilution HDF with 20 L replacement fluid; 8.1% and 9.1% for post-dilution HDF 20 L; 15.6% and 18.3% for pre-dilution HDF 60 L; 19.4% and 22.2% for complete membrane adsorption; 35.0% and 41.9% for displacement with tryptophan (2000 mg in 500 mL saline); 26.7% and 32.4% for displacement with ibuprofen (800 mg in 200 mL saline). Prolonged (one-month) use of tryptophan reduces the IS and pCS time-averaged concentration by 28.1% and 29.9%, respectively, compared to conventional HD. We conclude that competitive binding can be a pragmatic approach for improving PBUT removal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.