Reverse flow can annular combustor configuration becomes the inevitable option for industrial and marine gas turbine engine, due to its advantages over other configurations. The complexity associated with can annular configuration is optimum design of annular diffuser, as its flow field is dominated by downstream blockage created by transition duct geometry. In the present study, flow behavior in the annular diffuser has been analyzed by simulating realistic downstream combustor liner and transition duct geometry. Flow analysis has been carried out using ANSYS Fluent and turbulence has been modeled using Realizable k-ε model. The diffuser is designed based on G* method, for optimum pressure recovery. Six diffuser configurations have been analyzed by varying the inner wall profile. The effect of parameters on flow field within diffuser and dump region has been studied. Also, the static pressure recovery and total pressure loss coefficient of diffuser is calculated and compared. The results show that the profile of the inner wall and the dump region needs to be tailored to get optimum performance from diffuser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.