Since Coronal Mass Ejections (CMEs) are the major drivers of space weather, it is crucial to study their evolution starting from the inner corona. In this work we use Graduated Cylindrical Shell (GCS) model to study the 3D evolution of 59 CMEs in the inner (< 3R ) and outer (> 3R ) corona using observations from COR-1 and COR-2 on-board Solar TErrestrial RElations Observatory (STEREO) spacecraft. We identify the source regions of these CMEs and classify them as CMEs associated with Active Regions (ARs), Active Prominences (APs), and Prominence Eruptions (PEs). We find 27 % of CMEs show true expansion and 31 % show true deflections as they propagate outwards. Using 3D kinematic profiles of CMEs, we connect the evolution of true acceleration with the evolution of true width in the inner and outer corona. Thereby providing the observational evidence for the influence of the Lorentz force on the kinematics to lie in the height range of 2.5 − 3 R . We find a broad range in the distribution of peak 3D speeds and accelerations ranging from 396 to 2465 km s −1 and 176 to 10922 m s −2 respectively with a long tail towards high values coming mainly from CMEs originating from ARs or APs. Further, we find the magnitude of true acceleration is be inversely correlated to its duration with a power law index of -1.19. We believe that these results will provide important inputs for the planning of upcoming space missions which will observe the inner corona and the models that study CME initiation and propagation.
It is now well established that the Alfvénic waves are ubiquitous in the solar corona. However, the Alfvénic wave energy estimated from the Doppler velocity measurements in the corona was found to be four orders of magnitude less than that estimated from non-thermal line widths. McIntosh & De Pontieu (2012) suggested that this discrepancy in energy might be due to the line-of-sight (LOS) superposition of the several oscillating structures, which can lead to an underestimation of the Alfvénic wave amplitudes and energies. McIntosh & De Pontieu (2012) termed this coronal 'dark' or 'hidden' energy. However, their simulations required the use of an additional, unknown source of Alfvénic wave energy to provide agreement with measurements of the coronal non-thermal line widths. In this study, we investigate the requirement of this unknown source of additional 'dark' energy in the solar corona using gravitationally stratified 3D magnetohydrodynamic (MHD) simulations of propagating waves. We excite the transverse MHD waves and generate synthetic observations for the Fe XIII emission line. We establish that the LOS superposition greatly reduces the Doppler velocity amplitudes and increases the non-thermal line widths. Importantly, our model generates the observed wedge-shaped correlation between Doppler velocities and non-thermal line widths. We find that the observed wave energy is only 0.2-1% of the true wave energy which explains 2-3 orders of magnitude of the energy discrepancy. We conclusively establish that the true wave energies are hidden in the non-thermal line widths. Hence, our results rule out the requirement for an additional 'dark' energy in the solar corona.
Using multiwavelength imaging observations from the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO) on 03 May 2012, we present a novel physical scenario for the formation of a temporary X-point in the solar corona, where plasma dynamics is forced externally by a moving prominence. Natural diffusion was not predominant, however, a prominence driven inflow occurred firstly, forming a thin current sheet and thereafter enabling a forced magnetic reconnection at a considerably high rate. Observations in relation to the numerical model reveal that forced reconnection may rapidly and efficiently occur at higher rates in the solar corona. This physical process may also heat the corona locally even without establishing a significant and self-consistent diffusion region. Using a parametric numerical study, we demonstrate that the implementation of the external driver increases the rate of the reconnection even when the resistivity required for creating normal diffusion region decreases at the X-point. We conjecture that the appropriate external forcing can bring the oppositely directed field lines into the temporarily created diffusion region firstly via the plasma inflows as seen in the observations. The reconnection and related plasma outflows may occur thereafter at considerably larger rates.
Spicules are small hairy like structures seen at the solar limb mainly at chromospheric and transition region lines. They generally live for 3-10 minutes. We observe these spicules in a south polar region of the Sun with a coordinated observations using the Interface Region Imaging Spectrograph (IRIS) and the Atmospheric Imaging Assembly (AIA) instruments on board the Solar Dynamics Observatory. Propagating disturbances (PDs) are observed everywhere in the polar off-limb regions of the Sun at coronal heights. From this simultaneous observations we show that the spicules and the PDs may be originated by a common process. From space-time maps we find that the start of the trajectory of PDs is almost co-temporal with the time of the rise of the spicular envelope as seen by IRIS slit-jaw images at 2796Å and 1400Å. During the return of spicular material, brightenings are seen in AIA 171Å and 193Å images. The quasi-periodic nature of the spicular activity as revealed by the IRIS spectral image sequences and its relation to coronal PDs as recorded by the coronal AIA channels suggest that they have a common origin. We propose that reconnection like processes generate the spicules and waves simultaneously. The waves escape while the cool spicular material falls back.
We examine the role of small-scale transients in the formation and evolution of solar coronal plumes. We study the dynamics of plume footpoints seen in the vicinity of a coronal hole using the Atmospheric Imaging Assembly (AIA) images, the Helioseismic and Magnetic Imager (HMI) magnetogram on board the Solar Dynamics Observatory (SDO) and spectroscopic data from the Interface Region Imaging Spectrograph (IRIS). Quasi-periodic brightenings are observed in the base of the plumes and are associated with magnetic flux changes. With the high spectral and spatial resolution of IRIS, we identify the sources of these oscillations and try to understand what role the transients at the foot points can play in sustaining the coronal plumes.IRIS sit and stare observation provide a unique opportunity to study the evolution of foot points of the plumes. We notice enhanced line width, intensity and large deviation from the average Doppler shift in the line profiles at specific instances which indicate the presence of flows at the foot points of plumes. We propose that outflows (jet-like features) as a result of small scale reconnections affect the line profiles. These jet-like features may be also responsible for the generation of propagating disturbances within the plumes which are observed to be propagating to larger distances as recorded from multiple AIA channels. These propagating disturbances can be explained in terms of slow magnetoacoustic waves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.