During recent years carbon nanotubes (CNTs) have been attracted by many researchers as a drug delivery carrier. CNTs are the third allotropic form of carbon-fullerenes which were rolled into cylindrical tubes. To be integrated into the biological systems, CNTs can be chemically modified or functionalised with therapeutically active molecules by forming stable covalent bonds or supramolecular assemblies based on noncovalent interactions. Owing to their high carrying capacity, biocompatibility, and specificity to cells, various cancer cells have been explored with CNTs for evaluation of pharmacokinetic parameters, cell viability, cytotoxicty, and drug delivery in tumor cells. This review attempts to highlight all aspects of CNTs which render them as an effective anticancer drug carrier and imaging agent. Also the potential application of CNT in targeting metastatic cancer cells by entrapping biomolecules and anticancer drugs has been covered in this review.
T ransdermal drug delivery system (TDDS) is one of the systems lying under the category of controlled drug delivery, in which the aim is to deliver the drug through the skin in a predetermined and controlled rate. It has various advantages, like prolonged therapeutic effect, reduced side-effects, improved bioavailability, better patient compliance and easy termination of drug therapy. The stratum corneum is considered as the rate limiting barrier in transdermal permeation of most molecules. There are three main routes of drug penetration, which include the appendageal, transcellular and intercellular routes. Skin age, condition, physicochemical factors and environmental factors are some factors that are to be considered while delivering drug through this route. Basic components of TDDS include polymer matrix, membrane, drug, penetration enhancers, pressuresensitive adhesives, backing laminates, release liner, etc. Transdermal patches can be divided into various systems like reservoir system, matrix system and micro-reservoir system, which are used to incorporate the active ingredients into the circulatory system via the skin. After preparation of transdermal patches, consistent methodology are adopted to test the adhesion properties, physicochemical properties, in vitro drug release studies, in vitro skin permeation studies, skin irritation studies and stability studies. According to the duration of therapy, various drugs are commercially available in the form of transdermal patches.
In the current scenario of delivering therapeutic agents to the target site requires an efficient drug delivery carrier which can deliver the drug only on the site of action in a sustained and controlled manner. Among many such carriers, microspheres fulfill all the parameters for an potent drug carrier. Microspheres are defined as free flowing powders of spherical shape, consisting of proteins or synthetic polymers, which are either biodegradable or non-biodegradable in nature and ideally having a particle size ranging from 1-1000 μm. The main aim of such novel drug delivery system is to overcome the limitations of conventional dosage forms and providing more patient compliance, increase bioavailability and more specifically targeted delivery of drugs or other active agents. This review articles deals with the ideal characteristics, types, methods of preparation, their characteristics evaluation, in vitro-in vivo correlation and applications of microsphere as drug carrier. There are various methods available today for the preparation of microspheres with the goal of achieving reproducibility and consistency with good entrapment efficiency.
Background: This study is focused on developing and optimizing a self-nanoemulsifying drug delivery system (SNEDDS) of BCS class II drug (ezetimibe) through Box-Behnken design (BBD) and desirability function for enhanced dissolution. Pseudoternary phase diagrams were created by taking oil (Peceol), surfactant (Tween80), and co-surfactant (Transcutol-P) and the concentration ranges were identified for generating BBD. The composition of ezetimibe-SNEDDS was optimized through various response variables viz. globule size (Y 1), %transmittance (Y 2), selfemulsification time (Y 3), dissolution after 5 min and 40 min (Y 4 , Y 5). Optimized formulation was characterized for various physicochemical properties. Results: Pseudoternary phase diagram having maximum nano-emulsification area was selected to formulate SNEDDS. Derived polynomial equation and model graphs were exercised to investigate the impact of formulation variables on the responses. Significant effect of formulation composition on the responses was observed (p < 0.05). The formulation with least oil (10%) and high surfactant (60%) exhibited low globule size (24.4 ± 2.07 nm), low emulsification time (55 s) but high %transmittance (101.2%) and drug release (49.21% after 5 min; 95.27% after 40 min). Based on the desirability function, the optimized formulation was selected and reformulated. The optimized formulation (FF1) was found to be uniform, stable, and showed similar observed and predicted responses. Conclusion: The potential of SNEDDS in improving the dissolution profile of weakly soluble drug and the applicability of BBD with desirability function in optimizing a SNEDD formulation has made it possible to identify the impact of various independent variables on optimization of the formulation for better responses.
Helicobacter pylori have been subject to intense investigation since its discovery from gastric biopsy in 1982. This gastropathogen has been regarded as serious public health problem due to its association with dyspepsia, gastritis, gastroduodenal ulcers, mucus-associated lymphoid tissue lymphoma and gastric carcinoma. In vivo eradication of established H. pylori infections is difficult due to several factors such as gastric niche, coccoid form due to sub-minimum inhibitory concentration of antimicrobials, bacterial load, primary antibiotic resistance, patient compliance and stability of therapeutics in gastric acid secretion. Considering these factors, a logical way to improve the outcome of the treatment is to develop dosage forms which are able to deliver the anti-helicobacter agents in the gastric niche for both local and systemic actions, simultaneously taking care of stability of therapeutics in acidic environment. Such dosage forms, which are popularly known as gastro retentive drug delivery systems (GRDDS), have the immense potential to effectively counter the problem of high bacterial load; prevent induction of coccoid bacteria thereby improving treatment outcome and compliance. This review describes efficacy of various therapeutic agents, treatment strategies and status of different GRDDS until now.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.