Background
Over the last decade, aggregating evidences suggested that there is a causative link between mutation in gene associated with mitochondrial dysfunction and development of several neurodegenerative disorders.
Main text
Recent structural and functional studies associated with mitochondrial genes have shown that mitochondrial abnormalities possibly lead to mitochondrial dysfunction. Several studies on animal models of neurodegenerative diseases and mitochondrial genes have provided compelling evidence that mitochondria is involved in the initiation as well as progression of diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD), and Friedreich ataxia (FA).
Conclusion
In this mini-review, we have discussed the different etiologic and pathogenesis connected with the mitochondrial dysfunction and relevant neurodegenerative diseases that underlie the dominant part of mitochondrial genes in the disease development and its progress.
Background:
Neurodevelopmental disorders (NDDs) are types of disorders that are marked by a wide range of genetic and clinical mutability which will affect the development and function of the brain. Mitochondria are increasingly associated with various neurodevelopmental disorders and it is found because of mutation of mitochondrial genes, which leads to mitochondrial dysfunction.
Objective:
Understanding the pathways and mechanisms of mitochondrial dysfunction related to neurodevelopmental disorders such as ADHD, Pelizaeus-Merzbacher Disease (PMD), mental retardation, Autism spectrum disorder, Rett's syndrome, and Fragile X syndrome is important. In this review, we discussed the possible factors associated with mitochondria that influence the clinical presentation of NDDs, better understanding of the mechanisms behind these pathways will hopefully be helpful for the diagnosis and treatment approaches.
Conclusion:
Mitochondria are simply another subcellular victim of various neurodegenerative pathways, or are they a common denominator on the path to neurodegeneration? A better understanding of functional and molecular mechanistic pathways can lead to the identification of potential targets, thereby opening perspectives for future treatment.
A novel series of twenty-five rhodamine-linked benzenesulfonamide derivatives (7a–u and 9a–d) were synthesized and screened for their inhibitory action against four physiologically relevant human (h) carbonic anhydrase (CA) isoforms, namely hCA I, hCA II, hCA IX, and hCA XII. All the synthesized molecules showed good to excellent inhibition against all the tested isoforms in the nanomolar range due to the presence of the sulfonamide as a zinc binding group. The target compounds were developed from indol-3-ylchalcone-linked benzenesulfonamide where the indol-3-ylchalcone moiety was replaced with rhodanine-linked aldehydes or isatins to improve the inhibition. Interestingly, the molecules were slightly more selective towards hCA IX and XII compared to hCA I and II. The most potent and efficient ones against hCA I were 7h (KI 22.4 nM) and 9d (KI 35.8 nM) compared to the standard drug AAZ (KI 250.0 nM), whereas in case of hCA II inhibition, the derivatives containing the isatin nucleus as a tail were preferred. Collectively, all compounds were endowed with better inhibition against hCA IX compared to AAZ (KI 25.8 nM) as well as strong potency against hCA XII. Finally, these newly synthesized molecules could be taken as potential leads for the development of isoform selective hCA IX and XII inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.