Neurodegenerative diseases (ND) remains to be one of the biggest burdens on healthcare systems and serves as a leading cause of disability and death. Alzheimer’s disease (AD) is among the most common of such disorders, followed by Parkinson’s disease (PD). The basic molecular details of disease initiation and pathology are still under research. Only recently, the role of exosomes has been linked to the initiation and progression of these neurodegenerative diseases. Exosomes are small bilipid layer enclosed extracellular vesicles, which were once considered as a cellular waste and functionless. These nano-vesicles of 30–150 nm in diameter carry specific proteins, lipids, functional mRNAs, and high amounts of non-coding RNAs (miRNAs, lncRNAs, and circRNAs). As the exosomes content is known to vary as per their originating and recipient cells, these vesicles can be utilized as a diagnostic biomarker for early disease detection. Here we review exosomes, their biogenesis, composition, and role in neurodegenerative diseases. We have also provided details for their characterization through an array of available techniques. Their updated role in neurodegenerative disease pathology is also discussed. Finally, we have shed light on a novel field of salivary exosomes as a potential candidate for early diagnosis in neurodegenerative diseases and compared the biomarkers of salivary exosomes with other blood/cerebrospinal fluid (CSF) based exosomes within these neurological ailments.
The clinical demand for effective dermal substitutes continues as current commercially available products present limitations. However, there are no definitive in vitro methods to predict in vivo outcomes such as integration, cellularization and contraction, which may help the development of new dermal scaffolds. This study aimed to develop a multiparameter in vitro model of three-dimensional (3D) cell ingress into dermal scaffolds to predict in vivo outcomes of new dermal scaffolds under development. A new dermal scaffold, Smart Matrix, was compared to the scar-forming contractile collagen gel model and to the clinically well-established Integra® and Matriderm®. Parameters studied were cell viability and proliferation, apoptosis, matrix contraction, cell morphology, α-smooth muscle actin, and growth factor expression. Combinatorial evaluation of the results in a scoring matrix showed that Smart Matrix could offer an advantage over existing products. This method would be useful as an international golden scoring matrix to develop new dermal scaffolds that effectively improve the existing products, thus enabling better treatments for burns or chronic wounds.
The complexity of the dermal layer of skin means that damage to this section can result in permanent impairment of function. Partial or total dermal loss is a feature of deep burns and chronic wounds such as pressure sores or diabetic ulcers. The issues posed by traditional skin grafts have led to substantial research being carried out in the fields of tissue engineering and biomaterials science to develop a vast array of alternative skin substitutes. Given the large number of different materials, manufacturing methods, and techniques for implementation described for artificial skin substitutes, many classification systems have been created to simplify their categorization. Some of these systems are oriented toward clinicians while others toward researchers. However, none address the needs of both groups and none are intuitive. The creation of an effective classification system would be particularly helpful in the regulation, distribution, organization, and selection of skin substitutes. The aim of this review is to examine existing methods of classification of skin substitutes, and to propose a new system that uses an algorithm that is inspired by factorial design. Our system allows multiple factors to be simultaneously investigated or in this case, described, since all skin substitutes possess multiple characteristics: (1) cellularity (acellular or cellular), (2) layering (single layer or bilayer), (3) replaced region (epidermis, dermis, or both), (4) materials used (natural, synthetic, or both), and (5) permanence (temporary or permanent). The factors and levels are combined into an algorithm where all the possible combinations are shown. The multifactorial and palindromic structure of our system should enable all users to quickly understand the makeup of a selected skin substitute, or search for a skin substitute depending on their specific requirements. We feel that our proposed classification can be used by clinicians and biomedical researchers alike, which should be an advantage given the multidisciplinary nature of the tissue engineering field and the science that underpins the development of skin substitutes. We also touch upon some of the state-of-the-art skin substitutes that are commercially available or under development to demonstrate how our new method of classification might work.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.