Introduction: Antimicrobial resistance in bacterial pathogens is associated with high morbidity and mortality. We aimed to evaluate antibiotic resistance and β-lactamase production in clinical isolates of a tertiary care hospital in Central India. Materials and Methods: Clinical isolates (n=6472 isolates) from patients with infection were identified using standard microbiological techniques. Antibiotic susceptibility testing was performed according to the CLSI guidelines using the Kirby-Bauer disc diffusion technique. AmpC production in Enterobacteriaceae isolates was tested in screening test. Cloxacillin combined disc diffusion test was performed using cefoxitin disc with and without cloxacillin. Metallo-β-lactamase production in Enterobacteriaceae isolates was tested in screening test. Non-fermenting Gram-negative isolates were tested by combined disc test using imipenem and imipenem-EDTA discs. Results: Most bacteremia cases were caused by Staphylococcus aureus (43.13%), non-fermenting spp. (27.44%) and coagulase-negative staphylococci (11.76%). Escherichia coli (55.85%) was the main cause of urinary tract infection followed by Acinetobacter spp. (11.71%) and Klebsiella pneumoniae (10.36%). No resistance to linezolid was seen in Gram-positive isolates. Frequency of vancomycin-resistance was about 9% in Enterococcus spp. Methicillin resistance was seen in 19% of S. aureus isolates. Enterobacteriaceae and Citrobacter freundii isolates were completely resistant to aminopenicillin, first-and second-generation cephalosporins and cefamycin. Moreover, Klebsiella isolates were resistant to aminopenicillin. Enterobacteriaceae isolates showed resistance to aminopenicillin (89.87%), cephalosporins (54-90%) and cephamycin (37-45%). E. coli isolates were sensitive to piperacillintazobactam (87-96%) and imipenem (99.68-100%). Extended spectrum β-lactamase production was seen in 166 Enterobacteriaceae isolates (30.24%). AmpC production was seen in 15 (2.73%) Enterobacteriaceae isolates. Total β-lactamase production was found in 19.23% of the isolates. The frequency of β-lactamase production was highest in K. pneumoniae (51.67%). Conclusions: It is necessary to monitor drug resistance and β-lactamase production. Moreover, it is recommended to perform routine β-lactamase testing in microbiology laboratories for determining prevalence of antibiotic resistance and controlling their spread.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.