Federated learning enables the development of a machine learning model among collaborating agents without requiring them to share their underlying data. However, malicious agents who train on random data, or worse, on datasets with the result classes inverted, can weaken the combined model. BlockFLow is an accountable federated learning system that is fully decentralized and privacy-preserving. Its primary goal is to reward agents proportional to the quality of their contribution while protecting the privacy of the underlying datasets and being resilient to malicious adversaries. Specifically, BlockFLow incorporates differential privacy, introduces a novel auditing mechanism for model contribution, and uses Ethereum smart contracts to incentivize good behavior. Unlike existing auditing and accountability methods for federated learning systems, our system does not require a centralized test dataset, sharing of datasets between the agents, or one or more trusted auditors; it is fully decentralized and resilient up to a 50% collusion attack in a malicious trust model. When run on the public Ethereum blockchain, BlockFLow uses the results from the audit to reward parties with cryptocurrency based on the quality of their contribution. We evaluated BlockFLow on two datasets that offer classification tasks solvable via logistic regression models. Our results show that the resultant auditing scores reflect the quality of the honest agents' datasets. Moreover, the scores from dishonest agents are statistically lower than those from the honest agents. These results, along with the reasonable blockchain costs, demonstrate the effectiveness of BlockFLow as an accountable federated learning system.
Federated learning is a technique that enables distributed clients to collaboratively learn a shared machine learning model without sharing their training data. This reduces data privacy risks, however, privacy concerns still exist since it is possible to leak information about the training dataset from the trained model's weights or parameters. Therefore, it is important to develop federated learning algorithms that train highly accurate models in a privacy-preserving manner. Setting up a federated learning environment, especially with security and privacy guarantees, is a time-consuming process with numerous configurations and parameters that can be manipulated. In order to help clients ensure that collaboration is feasible and to check that it improves their model accuracy, a real-world simulator for privacy-preserving and secure federated learning is required. In this paper, we introduce PrivacyFL, which is an extensible, easily configurable, and scalable simulator for federated learning environments. Its key features include latency simulation, robustness to client departure/failure, support for both centralized (with one or more servers) and decentralized (serverless) learning, and configurable privacy and security mechanisms based on differential privacy and secure multiparty computation (MPC). In this paper, we motivate our research, describe the architecture of the simulator and associated protocols, and discuss its evaluation in numerous scenarios that highlight its wide range of functionality and its advantages. Our paper addresses a significant real-world problem: checking the feasibility of participating in a federated learning environment under a variety of circumstances. It also has a strong practical impact because organizations such as hospitals, banks, and research institutes, which have large amounts of sensitive data and would like to collaborate, would greatly benefit from having a system that enables them to do so in a privacy-preserving and secure manner. CCS CONCEPTS • Security and privacy; • Computing methodologies → Modeling and simulation; Machine learning;
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.