Selective laser melting (SLM) process is a powder bed fusion additive manufacturing process that finds applications in aerospace and medical industries for its ability to produce complex geometry parts. As the raw material used is in powder form, particle size distribution (PSD) is a significant characteristic that influences the build quality in turn affecting the functionality and aesthetics aspects of the product. This paper investigates the effect of PSD on the printed geometry for 316L stainless steel powder, where three coupled in-house simulation tools based on Discrete Element Method (DEM), Computational Fluid Dynamics (CFD), and Structural Mechanics are employed. DEM is used for simulating the powder bed distribution based on the different powder PSD. The CFD is used as a virtual testbed to determine thermal parameters such as heat capacity and thermal conductivity of the powder bed viewed as a continuum. The values found as a stochastic function of the powder distribution is used to analyse the effect on the melted zone and deformation using Structural Mechanics. Results showed that mean particle size and PSD had a significant effect on the packing density, melt pool layer thickness, and the final layer thickness after deformation. Specifically, a narrow particle size distribution with smaller mean particle size and standard deviation produced solidified final layer thickness closest to nominal layer thickness. The proposed simulation approach and the results will catalyze in development of geometry assurance strategies to minimize the effect of particle size distribution on the geometric quality of the printed part.
Selective laser heat treatment allows local modification of material properties and can have a wide range of applications within the automotive industry. Enhanced formability and strength are possible to achieve. As the process involves selective heating, positioning of the heat treatment pattern in local areas is vital. Pattern positioning is often suggested based on the part design and forming aspects of the material to avoid failures during manufacturing. Along with improving material properties in desired local areas, the process also produces unwanted distortion in the material. Such effects on variation should be considered and minimized. In this paper, the heat treatment pattern is offset from its original position and its effect on geometrical variation is investigated. Boron steel blanks are selectively laser heat treated with a specific heat treatment pattern and then cold formed to the desired shape. Two heat treatment pattern dimensions are examined. Geometrical variation at the blank level and after cold forming, and springback after cold forming are observed. Results show that pattern offsetting increases the effect on geometrical variation. Therefore, correct positioning of the heat treatment pattern is important to minimize its effect on geometrical variation along with enhancement in the material properties. Knowledge from this study will contribute to various stages of the geometry assurance process.
Selective laser heat treatment allows local modification of material properties and can have wide range of applications within the automotive industry. Enhanced formability and strength are possible to achieve. As the process involves selective heating, positioning of the heat treatment pattern in local areas is vital. Pattern positioning is often suggested based on the part design and forming aspects of the material to avoid failures during manufacturing. Along with improving material properties in desired local areas, the process also produces unwanted distortion in the material. Such effects on variation should be considered and minimized. In this paper, heat treatment pattern is offset from its original position and its effect on geometrical variation is investigated. Boron steel blanks are selectively laser heat treated with a specific heat treatment pattern and then stamped to desired shape. Two heat treatment pattern dimensions are examined. Variation at blank level and after stamping, and springback after stamping is observed. Results show that pattern offsetting leads to higher geometrical variation. Therefore, correct positioning of heat treatment pattern is important to minimize its effect on geometrical variation along with enhancing the material properties. Knowledge from this study will contribute to various stages of the geometrical assurance process.
Selective laser melting process is a powder bed fusion additive manufacturing process that finds applications in aerospace and medical industries for its ability to produce complex geometry parts. As the raw material used is in powder form, particle size distribution (PSD) is a significant characteristic that influences the build quality in turn affecting the functionality and aesthetics aspects of the end product. This paper investigates the effect of PSD on deformation for 316L stainless steel powder, where three coupled in-house simulation tools based on Discrete Element Method (DEM), Computational Fluid Dynamics (CFD), and Structural Mechanics are employed. DEM is used for simulating the powder distribution based on the different particle size distribution of the powder. The CFD is used as a virtual test bed to determine thermal parameters such as density, heat capacity and thermal conductivity of the powder bed viewed as a continuum. The values found as a stochastic function of the powder distribution is used to test the sensitivity of the melted zone and distortion using Structural Mechanics. Results showed significant influence of particle size distribution on the packing density, surface height, surface roughness, the stress state and displacement of the melted zone. The results will serve as a catalyst in developing geometry assurance strategies to minimize the effect of particle size distribution on the geometric quality of the printed part.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.