Autonomous cars need continuously updated depth information. Thus far, depth is mostly estimated independently for a single frame at a time, even if the method starts from video input. Our method produces a time series of depth maps, which makes it an ideal candidate for online learning approaches. In particular, we put three different types of depth estimation (supervised depth prediction, self-supervised depth prediction, and self-supervised depth completion) into a common framework. We integrate the corresponding networks with a ConvLSTM such that the spatiotemporal structures of depth across frames can be exploited to yield a more accurate depth estimation. Our method is flexible. It can be applied to monocular videos only or be combined with different types of sparse depth patterns. We carefully study the architecture of the recurrent network and its training strategy. We are first to successfully exploit recurrent networks for real-time self-supervised monocular depth estimation and completion. Extensive experiments show that our recurrent method outperforms its image-based counterpart consistently and significantly in both self-supervised scenarios. It also outperforms previous depth estimation methods of the three popular groups. Please refer to our webpage 1 for details.
We present a self-supervised learning framework to estimate the individual object motion and monocular depth from video. We model the object motion as a 6 degree-offreedom rigid-body transformation. The instance segmentation mask is leveraged to introduce the information of object. Compared with methods which predict dense optical flow map to model the motion, our approach significantly reduces the number of values to be estimated. Our system eliminates the scale ambiguity of motion prediction through imposing a novel geometric constraint loss term. Experiments on KITTI driving dataset demonstrate our system is capable to capture the object motion without external annotation. Our system outperforms previous self-supervised approaches in terms of 3D scene flow prediction, and contribute to the disparity prediction in dynamic area.
Autonomous cars need continuously updated depth information. Thus far, the depth is mostly estimated independently for a single frame at a time, even if the method starts from video input. Our method produces a time series of depth maps, which makes it an ideal candidate for online learning approaches. In particular, we put three different types of depth estimation (supervised depth prediction, self-supervised depth prediction, and self-supervised depth completion) into a common framework. We integrate the corresponding networks with a convolutional LSTM such that the spatiotemporal structures of depth across frames can be exploited to yield a more accurate depth estimation. Our method is flexible. It can be applied to monocular videos only or be combined with different types of sparse depth patterns. We carefully study the architecture of the recurrent network and its training strategy. We are first to successfully exploit recurrent networks for real-time self-supervised monocular depth estimation and completion. Extensive experiments show that our recurrent method outperforms its image-based counterpart consistently and significantly in both self-supervised scenarios. It also outperforms previous depth estimation methods of the three popular groups. The code is available at: www.github.com/wvangansbeke/
Monocular depth estimation is vital for scene understanding and downstream tasks. We focus on the supervised setup, in which ground-truth depth is available only at training time. Based on knowledge about the high regularity of real 3D scenes, we propose a method that learns to selectively leverage information from coplanar pixels to improve the predicted depth. In particular, we introduce a piecewise planarity prior which states that for each pixel, there is a seed pixel which shares the same planar 3D surface with the former. Motivated by this prior, we design a network with two heads. The first head outputs pixel-level plane coefficients, while the second one outputs a dense offset vector field that identifies the positions of seed pixels. The plane coefficients of seed pixels are then used to predict depth at each position. The resulting prediction is adaptively fused with the initial prediction from the first head via a learned confidence to account for potential deviations from precise local planarity. The entire architecture is trained end-to-end thanks to the differentiability of the proposed modules and it learns to predict regular depth maps, with sharp edges at occlusion boundaries. An extensive evaluation of our method shows that we set the new state of the art in supervised monocular depth estimation, surpassing prior methods on NYU Depth-v2 and on the Garg split of KITTI. Our method delivers depth maps that yield plausible 3D reconstructions of the input scenes. Code is available at: https://github.com/SysCV/P3Depth
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.