Potential applications of thin film metamaterials are diverse and their realization to offer miniaturized waveguides, antennas and shielding patterns are on anvil. These artificially engineered structures can produce astonishing electromagnetic responses because of their constituents being engineered at much smaller dimensions than the wavelength of the incident electromagnetic wave, hence behaving as artificial materials. Such micro-nano dimensions of thin film metamaterial structures can be customized for various applications due to their exclusive responses to not only electromagnetic, but also to acoustic and thermal waves that surpass the natural materials' properties. In this paper, the recent major advancements in the emerging fields of diagnostics (sensors) and therapeutics involving thin film metamaterials have been reviewed and underlined; discussing their edge over conventional counterpart techniques; concentrating on their design considerations and feasible ways of achieving them. Challenges faced in sensitivity, precision, accuracy and factors that interfere with the degree of performance of the sensors are also dealt with, herein.
An extremely compact metamaterial microstrip sensor based on complementary split-ring-resonators (CSRRs) has been fabricated for chemical sensing. This device exhibits a resonance with high rejection at 4.5 GHz, which demonstrates concomitant variations when exposed to liquids of various permittivity values. The resonance frequency of CSRR is sensitive to the change in nearby dielectric material. The sensing of petrol shows a shift in frequency with a sharp dip in transmission, while, with ethanol, the frequency shift is accompanied with increase in the power of the signal. The ultra-fast reversibility and repeatability offers good headway towards hybrid fuel sensing applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.